[20分]六條中二數學[恆等式]及[因式分解]問題

2009-06-08 5:59 am
因為問題字數限制,我打左中文,但題目係英文黎既..
1.show the following equation is not an identitty.
u(v-w)^2+v(u-w)^2=w(u-v)^2
2.Find the values of constants A and B in the following identities.
(x-A)(x-2)=x^2+Bx-6
3.factorize the following expression.
i. x(y+1)^2-4xy-4x
ii. ky(2k-h)(2x-2y)-y(2k-h)^2(x-y)+2h(2h-4k)(x-y)^2
4. i. Factorize x^3-x2y+xy^2.
ii. Factorize x^2y-xy^2+y^3.
iii. Using the results of i. and ii. , factorize x^3+y^3.
5. i. Factorize -m^2(r-1)+m-m^2.
ii. Factorize m(r-1)^2-(r-1)-m(1-r).
iii. Using the results of i. and ii. , factorize
[-m^2(r-1)+m-m^2]+[m(r-1)^2-(r-1)-m(1-r)].

我有答案:
2. A= -3,B= -1
3. i. x(y+1)(y-3)
ii. h(2k-h)(x-y)(5y-4x)
4. i. x(x^2-xy+y^2)
ii. y(x^2-xy+y^2)
iii. (x+y)(x^2-xy+y^2)
5. i. m(1-mr)
ii. (r-1)(mr-1)
iii. (1-mr)(m-r+1)

唔該回答者寫埋步驟,有20分!

回答 (1)

2009-06-08 8:45 am
✔ 最佳答案
1.
L.H.S. = u(v - w)2 + v(u - w)2
= u(v2 - 2vw + w2) + v(u2 - 2uw + w2)
= uv2 - 2uvw + 2uw2 + u2v - 2uvw + vw2
= uv2 - 4uvw + 2uw2 + u2v + vw2

R.H.S. = w(u - v)2
= w(u2 - 2uv + v2)
= u2w - 2uvw + v2w

Hence, L.H.S. ≠ R.H.S.


2.
(x - A)(x - 2) = x2 + Bx - 6
x2 - 2x - Ax + 2A = x2 + Bx - 6
x2 - (2 + A)x + 2A = x2 + Bx - 6

Compare the constant terms:
2A = -6
A = -3

Compare the x terms:
-(2 + A)x = Bx
-(2 - 3) = B
B = 1

Ans: A = -3 and B = 1
(The given answer of B is incorrect.)


3.
i.
x(y + 1)2 - 4xy - 4x
= x(y + 1)2 - 4x(y + 1)
= x(y + 1)[(y + 1) - 4]
= x(y + 1)(y - 3)

ii.
ky(2k - h)(2x - 2y) - y(2k - h)2(x - y) + 2h(2h - 4k)(x - y)2
= 2ky(2k - h)( x - y) - y(2k - h)2(x - y) + 4h(h - 2k)(x - y)2
= 2ky(2k - h)( x - y) - y(2k - h)2(x - y) - 4h(2k - h)(x - y)2
= (2k - h)(x - y)[2ky - y(2k - h) - 4h(x - y)]
= (2k - h)(x - y)[2ky - 2ky + hy - 4hx + 4hy]
= (2k - h)(x - y)(5hy - 4hx)
= h(2k - h)(x - y)(5y - 4x)


4.
i.
x3 - x2y + xy2
= x(x2 - xy + y2)

ii.
x2y - xy2 + y3
= y(x2 - xy + y2)

iii.
x3 + y3
= (x3 - x2y + xy2) + (x2y - xy2 + y3)
= x(x2 - xy + y2) + y(x2 - xy + y2)
= (x + y)(x2 - xy + y2)


5.
i.
-m2(r - 1) + m - m2
= -m2r + m2 + m - m2
= -m2r + m
= m - m2r
= m(1 - mr)

ii.
m(r - 1)2 - (r - 1) - m(1 - r)
= m(r - 1)2 - (r - 1) + m(r - 1)
= (r - 1)[m(r - 1) - 1 + m]
= (r - 1)(mr - m - 1 + m)
= (r - 1)(mr - 1)

iii.
[-m2(r - 1) + m - m2] + [m(r - 1)2 - (r - 1) - m(1 - r)]
= m(1 - mr) + (r - 1)(mr - 1)
= m(1 - mr) - (r - 1)(1 - mr)
= (1 - mr)[m - (r - 1)]
= (1 - mr)(m - r + 1)


收錄日期: 2021-04-13 16:39:28
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090607000051KK02160

檢視 Wayback Machine 備份