pure maths
y=∫[(1-x)/(1+x)]^(1/2) dx
full steps plx
回答 (2)
應是用了 by part;
y=∫[(1-x)/(1+x)]^(1/2) dx
=2∫(1-x)^(1/2) d ((1+x)^(1/2))
=2[(1-x)(1+x)]^(1/2) - 2∫(1+x)^(1/2) d[(1 - x)^(1/2)]
=2[(1-x)(1+x)]^(1/2) - ∫[(1+x)(1-x)]^(1/2) dx
將第一及第四行合併;
積分放在左邊
將左邊積分通分母, 變成 ∫2/ (1- x^2)^(1/2) dx
但始終要 let x = siny etc...
之前的 t formula 方法比較直截.
2009-06-09 01:04:49 補充:
但我個人贊成用有理化.
2009-06-09 01:14:04 補充:
last row should be
2[(1-x)(1+x)]^(1/2) + ∫[(1+x)(1-x)]^(1/2) dx
then
將左邊積分通分母, 變成 ∫-2x/ (1- x^2)^(1/2) dx
收錄日期: 2021-04-13 16:39:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090607000051KK01911
檢視 Wayback Machine 備份