數學Arithmetic Sequences既問題 -PLS

2009-06-05 9:51 pm
NO1-In each of the following Arithmetic Sequences ,find(i) the number of
terms ;
(ii) the first negative term.
(a) 40, 32 , ...,-32
(b)85,79,...,-17

N02-Consider all the multiples of 4 from 100 to 999.
A(i) How many multiples are there?
(ii)Find theSum of these multiples .
(b)Hence find the sum of all the positive there-digit integers which are NOTT divisible by 4.
更新1:

a 同b ..唔明,想問下條式係咩>

回答 (1)

2009-06-05 10:16 pm
✔ 最佳答案
(a) The number of term=(40+32)/8+1=10
The first negative term is -8
(b) The number of term=(85+17)/6+1=18
The first negative term is -17+6*2=-5
2 (a)(i) Consider 100+4(n-1)=1000
n=900/4+1=226
So, there are 226-1=225 multiples
(ii) S=100+104+...+996
S=225/2[200+(225-1)(4)]=123300
(b) The sum is
(1000/2)(100+999)-123300
=426200

2009-06-07 17:15:15 補充:
你用T(n)=a+(n-1)d吧


收錄日期: 2021-04-26 14:03:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090605000051KK00597

檢視 Wayback Machine 備份