Probability distribution急!!!

2009-06-05 1:46 am
Independent random variables X and Y have probability distribution as shown in the tables:

X P(X=x)
0 0.3
1 0.2
2 0.4
3 0.1

Y P(Y=y)
0 0.4
1 0.2
2 0.4

Supoose X1 and X2 is a random of size 2 taken from X.Define V=X1+X2 .Find E(V) and Var(V).

thx

回答 (1)

2009-06-05 9:52 pm
✔ 最佳答案
First of all, we need to list out all the outcome of V and their probability








X1
X2
V
Pr (X1 and X2)

0
0
0
0.09

0
1
1
0.06

0
2
2
0.12

0
3
3
0.03

1
0
1
0.06

1
1
2
0.04

1
2
3
0.08

1
3
4
0.02

2
0
2
0.12

2
1
3
0.08

2
2
4
0.16

2
3
5
0.04

3
0
3
0.03

3
1
4
0.02

3
2
5
0.04

3
3
6
0.01
Hence,









X1
X2
V
Pr (X1 and X2)
Pr (V)

0
0
0
0.09
0.09

0
1
1
0.06
0.12

1
0
1
0.06

0
2
2
0.12
0.28

1
1
2
0.04

2
0
2
0.12

0
3
3
0.03
0.22

1
2
3
0.08

2
1
3
0.08

3
0
3
0.03

1
3
4
0.02
0.20

2
2
4
0.16

3
1
4
0.02

2
3
5
0.04
0.08

3
2
5
0.04

3
3
6
0.01

0.01









V
Pr (V)

0
0.09

1
0.12

2
0.28

3
0.22

4
0.20

5
0.08

6
0.01
So,
E(V) = 1 x 0.12 + 2 x 0.28 + 3 x 0.22 + 4 x 0.2 + 5 x 0.08 + 6 x 0.01 = 2.6
Similarly,
E(V2) = 1 x 0.12 + 4 x 0.28 + 9 x 0.22 + 16 x 0.2 + 25 x 0.08 + 36 x 0.01 = 8.78
Var(V) = E(V2) - E2(V) = 8.78 - 2.62 = 2.02

2009-06-05 13:59:31 補充:
It seems that the probability mass function for Y is not useful.

2009-06-06 10:08:42 補充:
Is there any follow-up question?


收錄日期: 2021-04-23 18:17:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090604000051KK01023

檢視 Wayback Machine 備份