The integral of the curl of a vector field over a surface equals the line integral of the vector field over the curve bounding the surface.
我想問the curve bounding the surface係指什麼?
如果係一條(曲)線,線又點bound the surface?
如果唔係線,又點line integral?
請賜教!
更新1:
如果一個surface無底呢? 如:x^2+y^2+z^2=1 仲有,個底係唔係一定要平? 還是它的意思是投影?
更新2:
感謝maximal_ideal_space 的意見, 還有的問題是:個底係唔係一定要平? 一個斜的底可否接受?如x+y-z=0