數學難題 唔識做

2009-06-03 6:52 am
題目:
In the figure, Sammi and Andy are 170m apart. There is a lamp-post between them. Sammi, Andy and the lamp-post form a straight line. Find the height of the lamp-post.
Figure:
~~~~~~~~~~~~~~top of the lamp-post
~~~~~~~~~~/~~~~~~~~~~~~~~~~~\~~~~~~
~~~~~~~~/~~~~~~~~~~~~~~~~~~~~~\~~~
~~~~~~/~~~~~~~~~~~~~~~~~~~~~~~~~\~~~~~
Andy∠35°~~~~~~~~Lamp-post~~~~~~~~40°\Sammi

老師話要用sin cos tan
唔識計

回答 (4)

2009-06-03 9:42 am
✔ 最佳答案
Let (X)m be the length between Andy and Lamp-post,
(170-X)m be the length between Sammi and Lamp-post,
(Y)m be the height of the lamp-post.



Because Y/X = tan35

Y = tan35 x X



and Y/(170-X) = tan40

Y = tan40 x (170-X)



So tan35 x X = tan40 x (170-X)

0.700 x X = 0.839 x (170-X)

0.700X = 0.839 x 170 - 0.839 x X

0.700X = 142.63 - 0.839X

0.700X + 0.839X = 142.63

1.539X = 142.63

X = 92.677



Height of Lamp-post:

Y/X = tan35

Y/92.677 = tan35

Y/92.677 = 0.700

Y = 0.700 x 92.677

Y = 64.87

So, the height of the lamp-post is 64.87m.
2009-06-04 10:33 pm
Mathod 1
Let Point A is Andy
Let Point L is Lamp post
Let Point S is Sammi
Let Point T is the top of the lamp post
Then ATS is a triangle with angle A = 35° and angle S is 40°
Also TL bisect the triangle into two right angle triangles at T
Hence we have two equations
tan 35 = TL / AL ...............1
tan 40 = TL / (170-AL)......2
from 1 AL = TL / tan 35
from 2 AL = 170 - TL / tan 40
therefore TL / tan 35 = 170 - TL / tan 40
TL tan 40 = 170 x tan35 x tan 40 - TL tan 35
TL (tan 40 + tan 35) = 170 x tan 35 x tan 40
TL = 170 x tan 35 x tan 40 / (tan 40 + tan 35)

Mathod 2
Let (X)m be the length between Andy and Lamp-post,
(170-X)m be the length between Sammi and Lamp-post,
(Y)m be the height of the lamp-post.



Because Y/X = tan35

Y = tan35 x X



and Y/(170-X) = tan40

Y = tan40 x (170-X)



Therefore tan35 x X = tan40 x (170-X)

0.700 x X = 0.839 x (170-X)

0.700X = 0.839 x 170 - 0.839 x X

0.700X = 142.63 - 0.839X

0.700X + 0.839X = 142.63

1.539X = 142.63

X = 92.677



Height of Lamp-post:

Y/X = tan35

Y/92.677 = tan35

Y/92.677 = 0.700

Y = 0.700 x 92.677

Y = 64.87

Therefore, the height of the lamp-post is 64.87m.
參考: me
2009-06-03 7:24 am
題目係咪仲有些條件未寫?
2009-06-03 7:12 am
Let Point A is Andy
Let Point L is Lamp post
Let Point S is Sammi
Let Point T is the top of the lamp post
Then ATS is a triangle with angle A = 35° and angle S is 40°
Also TL bisect the triangle into two right angle triangles at T
Hence we have two equations
tan 35 = TL / AL ...............1
tan 40 = TL / (170-AL)......2
from 1 AL = TL / tan 35
from 2 AL = 170 - TL / tan 40
therefore TL / tan 35 = 170 - TL / tan 40
TL tan 40 = 170 x tan35 x tan 40 - TL tan 35
TL (tan 40 + tan 35) = 170 x tan 35 x tan 40
TL = 170 x tan 35 x tan 40 / (tan 40 + tan 35)


收錄日期: 2021-04-22 00:39:29
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090602000051KK01919

檢視 Wayback Machine 備份