✔ 最佳答案
光譜,全稱為光學頻譜,是複色光通過色散系統(如光柵、棱鏡)進行分光後,依照光的波長(或頻率)的大小順次排列形成的圖案。光譜中最大的一部分可見光譜是電磁波譜中人眼可見的一部分,在這個波長範圍內的電磁輻射被稱作可見光。光譜並沒有包含人眼及大腦能區別的所有顏色,譬如褐色和粉紅色。條目顏色解釋了這種現象的原因。
原理
複色光中有着各種波長(或頻率)的光,這些光在介質中有着不同的折射率。因此,當複色光通過具有一定幾何外形的介質(如三棱鏡)之後,波長不同的光線會因出射角的不同而發生色散現象,投映出連續的或不連續的彩色光帶。
日光被三棱鏡分色
這個原理亦被應用於著名的太陽光的色散實驗。太陽光呈現白色,當它通過三棱鏡折射後,將形成由紅、橙、黃、綠、藍、靛、紫順次連續分佈的彩色光譜,覆蓋了大約在390到770納米的可見光區。歷史上,這一實驗由英國科學家艾薩克·牛頓爵士於1665年完成,使得人們第一次接觸到了光的客觀的和定量的特徵。
光譜的分類
按波長區域
在一些可見光譜的紅端之外,存在着波長更長的紅外線;同樣,在紫端之外,則存在有波長更短的紫外線。紅外線和紫外線都不能為肉眼所覺察,但可通過儀器加以記錄。因此,除可見光譜,光譜還包括有紅外光譜與紫外光譜。
按產生方式
按產生方式,光譜可分為發射光譜、吸收光譜和散射光譜。
有的物體能自行發光,由它直接產生的光形成的光譜叫做發射光譜。
發射光譜可分為三種不同類別的光譜:線狀光譜、帶狀光譜和連續光譜。線狀光譜主要產生於原子,由一些不連續的亮線組成;帶狀光譜主要產生於分子由一些密集的某個波長範圍內的光組成;連續光譜則主要產生於白熾的固體、液體或高壓氣體受激發發射電磁輻射,由連續分佈的一切波長的光組成。
太陽光光譜是典型的吸收光譜。因為太陽內部發出的強光經過溫度較低的太陽大氣層時,太陽大氣層中的各種原子會吸收某些波長的光而使產生的光譜出現暗線。
在白光通過氣體時,氣體將從通過它的白光中吸收與其特徵譜線波長相同的光,使白光形成的連續譜中出現暗線。此時,這種在連續光譜中某些波長的光被物質吸收後產生的光譜被稱作吸收光譜。通常情況下,在吸收光譜中看到的特徵譜線會少於線狀光譜。
當光照射到物質上時,會發生非彈性散射,在散射光中除有與激發光波長相同的彈性成分(瑞利散射)外,還有比激發光波長長的和短的成分,後一現象統稱為拉曼效應。這種現象於1928年由印度科學家拉曼所發現,因此這種產生新波長的光的散射被稱為拉曼散射,所產生的光譜被稱為拉曼光譜或拉曼散射光譜。[1]
按產生本質
按產生本質,光譜可分為分子光譜與原子光譜。
在分子中,電子態的能量比振動態的能量大50~100倍,而振動態的能量又比轉動態的能量大50~100倍。因此在分子的電子態之間的躍遷中,總是伴隨着振動躍遷和轉動躍遷的,因而許多光譜線就密集在一起而形成分子光譜。因此,分子光譜又叫做帶狀光譜。
在原子中,當原子以某種方式從基態提升到較高的能態時,原子內部的能量增加了,這些多餘的能量將被以光的形式發射出來,於是產生了原子的發射光譜,亦即原子光譜。因為這種原子能態的變化是非連續量子性的,所產生的光譜也由一些不連續的亮線所組成,所以原子光譜又被稱作線狀光譜。[2]
光譜分析
主條目:光譜分析
由於每種元素都有自己的特徵譜線,因此可根據光譜來鑒別物質和確定其化學組成,這種方法被稱作光譜分析。