微積分指數對數函數的導函數

2009-06-01 7:16 am
(1)求y=ln(e2x+e-x)根號
(2)y=3右上方放2x
(3)y=ln(x^2+y^2)
更新1:

是整個要根號 謝謝

更新2:

(1)答案是你那答案分母少掉那個根號那一串 才是答案耶>< (2)y=ln3‧3右上方2x‧ln2‧2右上方x

更新3:

(1)y=ln(e右上方2x+e右上方-x)根號 前面ln不用根號

更新4:

答案是 (2)y=ln3‧3右上方2x‧ln2‧2右上方x 跟你不一樣>

回答 (3)

2009-06-01 9:09 am
✔ 最佳答案
As follows:

圖片參考:http://i707.photobucket.com/albums/ww74/stevieg90/07-3.gif


2009-06-02 20:08:26 補充:
第一題之修正:
http://i707.photobucket.com/albums/ww74/stevieg90/08-6.gif

2009-06-05 19:55:25 補充:
第二題之修正:
http://i707.photobucket.com/albums/ww74/stevieg90/04-19.gif
2009-06-01 9:24 am
(1)

圖片參考:http://latex.codecogs.com/gif.latex?%5C%5Cy=%5Csqrt%7B%5Cln&space;%5Cleft&space;%28e%5E%7B2x%7D&plus;e%5E%7B-x%7D&space;%5Cright&space;%29%7D&space;%5C%5Cy%5E%7B2%7D=%5Cln&space;%5Cleft&space;%28e%5E%7B2x%7D&plus;e%5E%7B-x%7D&space;%5Cright&space;%29&space;%5C%5C2yy%27=%5Cfrac%7B2e%5E%7B2x%7D-e%5E%7B-x%7D%7D%7Be%5E%7B2x%7D&plus;e%5E%7B-x%7D%7D&space;%5C%5Cy%27=%5Cfrac%7B1%7D%7B2y%7D%5Cfrac%7B2e%5E%7B2x%7D-e%5E%7B-x%7D%7D%7Be%5E%7B2x%7D&plus;e%5E%7B-x%7D%7D=%5Cfrac%7B1%7D%7B2%5Csqrt%7B%5Cln&space;%5Cleft&space;%28e%5E%7B2x%7D&plus;e%5E%7B-x%7D&space;%5Cright&space;%29%7D%7D%5Cfrac%7B2e%5E%7B2x%7D-e%5E%7B-x%7D%7D%7Be%5E%7B2x%7D&plus;e%5E%7B-x%7D%7D

or

圖片參考:http://latex.codecogs.com/gif.latex?%5C%5Cy=%5Csqrt%7B%5Cln&space;%5Cleft&space;%28e%5E%7B2x%7D&plus;e%5E%7B-x%7D&space;%5Cright&space;%29%7D&space;%5C%5Cy%5E%7B2%7D=%5Cln&space;%5Cleft&space;%28e%5E%7B2x%7D&plus;e%5E%7B-x%7D&space;%5Cright&space;%29&space;%5C%5Ce%5E%7By%5E%7B2%7D%7D=e%5E%7B2x%7D&plus;e%5E%7B-x%7D&space;%5C%5C2yy%27e%5E%7By%5E%7B2%7D%7D=2e%5E%7B2x%7D-e%5E%7B-x%7D&space;%5C%5Cy%27=%5Cfrac%7B2e%5E%7B2x%7D-e%5E%7B-x%7D%7D%7B2%5Csqrt%7B%5Cln&space;%5Cleft&space;%28e%5E%7B2x%7D&plus;e%5E%7B-x%7D&space;%5Cright&space;%29%7D%5Cleft&space;%28e%5E%7B2x%7D&plus;e%5E%7B-x%7D&space;%5Cright&space;%29%7D

(2)

圖片參考:http://latex.codecogs.com/gif.latex?%5C%5Cy=3%5E%7B2x%7D=e%5E%7B%5Cln&space;3%5E%7B2x%7D%7D=e%5E%7B2x%5Cln&space;3%7D&space;%5C%5Cy%27=2%5Cleft&space;%28%5Cln3&space;%5Cright&space;%29e%5E%7B2x%5Cln&space;3%7D=2%28%5Cln3&space;%5Cright&space;%29%293%5E%7B2x%7D

or換底

圖片參考:http://latex.codecogs.com/gif.latex?%5C%5Cy=3%5E%7B2x%7D&space;%5C%5C%5Clog_%7B3%7Dy=2x&space;%5C%5C%5Cfrac%7B%5Cln&space;y%7D%7B%5Cln&space;3%7D=2x&space;%5C%5C%5Cfrac%7By%27%7D%7By%7D=2%5Cln&space;3&space;%5C%5Cy%27=2%5Cleft&space;%283%5E%7B2x&space;%5Cright&space;%29%7D%5Cln&space;3

(3)

圖片參考:http://latex.codecogs.com/gif.latex?%5C%5Cy=%5Cln%28x%5E2&plus;y%5E2%29&space;%5C%5Ce%5E%7By%7D=x%5E%7B2%7D&plus;y%5E%7B2%7D&space;%5C%5Ce%5E%7By%7Dy%27=2x&plus;2yy%27&space;%5C%5Cy%27=%5Cfrac%7B2x%7D%7Be%5E%7By%7D-2y%7D=%5Cfrac%7B2x%7D%7Bx%5E%7B2%7D&plus;y%5E%7B2%7D-2%5Cln%28x%5E2&plus;y%5E2%29&space;%7D

or 直接套用ln微分公式再做移項整理


2009-06-02 20:11:13 補充:
y=ln[(x^2+y^2)^(1/2)]=(1/2)ln(x^2+y^2)
y'=(1/2)[(2x+2y)/(x^2+y^2)]=(x+y)/(x^2+y^2)

2009-06-02 20:13:50 補充:
剛剛補充不小心把根號放到第三題
更改過題目後的第一題為下
y=ln[(e2x+e-x)^(1/2)]=(1/2)ln(e^(2x)+e^(-x))
=(1/2)[(2e^(2x)-e^(-x))/(e^(2x)+e^(-x))]
2009-06-01 7:23 am
1. 根號是指整個的還是只有 e^(2x)+e^(-x)
2. 3^(2x) ??
3. 是隱微分?? 想確定一下!!


收錄日期: 2021-04-22 00:48:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090531000015KK11554

檢視 Wayback Machine 備份