幾題關於微分學的問題

2009-05-29 9:16 am
Q1:

圖片參考:http://www.mathway.com/math_image.aspx?p=xSMB02SMB01c?p=38?p=22

f(x)= ,a、b、c均為常數,試決定a、b之值(以c
表示),使得f'(c)存在
ax+b,x>c
ans:a=2c,b=- c
Q2:

圖片參考:http://www.mathway.com/math_image.aspx?p=SMB02LSMB03h:0,SMB02FSMB03SMB083-(x+h)sin(x+h)SMB09SMB02ESMB033SMB02eSMB03-(3-xsin(x))SMB02ESMB033SMB02eSMB03+sinSMB02ESMB033SMB02eSMB03(h)SMB103hSMB02fSMB03SMB02lSMB03?p=366?p=46
=?
ans:
圖片參考:http://www.mathway.com/math_image.aspx?p=(3-xsin(x))SMB02ESMB032SMB02eSMB03(-sin(x)-xcos(x))?p=243?p=22

Q2:
設F(x)=f(
圖片參考:http://www.mathway.com/math_image.aspx?p=ySMB02ESMB033SMB02eSMB03?p=22?p=22
,求F(x)之微分?
ans:
圖片參考:http://www.mathway.com/math_image.aspx?p=SMB08SMB02FSMB03x-1SMB10x+2SMB02fSMB03SMB09SMB02ESMB033SMB02eSMB03*SMB08SMB02FSMB033SMB10(x+2)SMB02ESMB032SMB02eSMB03SMB02fSMB03SMB09?p=138?p=42

Q3:
已知f'(0)=4,求
圖片參考:http://www.mathway.com/math_image.aspx?p=SMB02FSMB03dSMB10dxSMB02fSMB03*SMB08f(SMB02FSMB03eSMB02ESMB03xSMB02eSMB03-1SMB10eSMB02ESMB03xSMB02eSMB03+1SMB02fSMB03)SMB09?p=108?p=42
=?
ans:2
Q4:

圖片參考:http://www.mathway.com/math_image.aspx?p=SMB02FSMB03dySMB10dxSMB02fSMB03?p=24?p=42
=?
ans:
圖片參考:http://www.mathway.com/math_image.aspx?p=y-SMB02FSMB033SMB102SMB02fSMB03*aSMB01-(x-SMB02FSMB033SMB102SMB02fSMB03a)?p=128?p=42

Q5:

圖片參考:http://www.mathway.com/math_image.aspx?p=SMB02FSMB03dySMB10dxSMB02fSMB03?p=24?p=42
=?
ans:
圖片參考:http://www.mathway.com/math_image.aspx?p=-SMB02FSMB03ySMB10xSMB02fSMB03?p=24?p=42

◎教教我這幾題並附上計算過程好嗎?謝謝!!

回答 (2)

2009-05-29 10:18 pm
✔ 最佳答案
Q1: (a, b)=(2c, - c^2)
f'(c)存在=> f'(c+)= f'(c-) => a= 2c
& f(c+)=f(c-)=f(c) => c^2= 2c^2+b => b= - c^2
Q2:
lim(h->0) (sinh)^3 / (3h) = lim(h->0) (sinh)/ h * h^2 /3 = 1*0 =0
前兩項= 1/3 f'(x) ( f(x)= (3- x sinx)^3 )
= 1/3 * 3(3- x sinx)^2 *(0 - sinx - x cosx)
= - (sinx+ xcosx)(3- x sinx)^2 ---- Ans
Q2':
By chain rule:
F'(x)= f'(y)* dy/dx ( y = (x-1)/(x+2) )
= [(x-1)/(x+2)]^3 * 3/(x+2)^2
= 3 (x-1)^3 / (x+2)^5
Note: F(x)之微分= F'(x) dx
F(x)之導函數=F'(x)
Q3:
d/dx {f[(e^x -1)/(e^x + 1)]}
= f'[(e^x -1)/(e^x +1) ] * d/dx [ (e^x -1)/(e^x +1) ]
= f'[....] *2 e^x /(e^x +1)^2
令 x=0得 f'(0)* 2*1 / 4= 2
Q4:
隱函數之導函數:
d/dx (x^3+y^3) = d/dx (3axy)
=>3x^2 + 3y^2 * y' = 3ay+ 3axy'
=> (y^2 - ax)y'= ay- x^2
=> dy/dx = y'= (ay-x^2)/(y^2 - ax)
when (x, y)=(3a/2, 3a/2) => dy/dx = - 1
tangent line is y- 3a/2 = - (x- 3a/2)
Q5:
隱函數之導函數:
d/dx (1+ xy) = d/dx [ exp(xy)]
y+ xy'= exp(xy) (y+ xy')
若 xy=0 => dy/dx 不存在 (saddle point)
若 xy≠0 => y+x y'=0 => dy/dx = - y/x
2009-05-29 6:18 pm
圖都掛了看不到


收錄日期: 2021-05-04 00:45:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090529000016KK00725

檢視 Wayback Machine 備份