Binomial

2009-05-25 5:12 am
1a) use the binomial series to expand (2- 3x) ^10 in ascending powers of x up to and including the term in x^3, giving each coefficient as an integer.

b) use your series expansion, with a suitable value for x, to obtain an estimate for 1.97^10 giving your answer to 2 d.p.

2) Expand (x- 1 over x) ^5, simplifying the coefficients.

回答 (1)

2009-05-25 9:05 pm
✔ 最佳答案
1.a. By Binomial Expansion,

(2 - 3x)10

= (2)10 + 10C1(2)9(-3x) + 10C2(2)8(-3x)2 + 10C3(2)7(-3x)3 + ...

= 1024 - 15 360x + 103 680x2 - 414 720x3 + ...


b. (1.97)10

= [2 - 3(0.01)]10

= 1024 - 15 360(0.01) + 103 680(0.01)2 - 414 720(0.01)3 + ...

= 880.35 (2 d.p.)


2. (x - 1/x)5

= x5 + 5C1x4(-1/x) + 5C2x3(-1/x)2 + 5C3x2(-1/x)3 + 5C4x(-1/x)4 + (-1/x)5

= x5 - 5x3 + 10x - 10/x + 5/x3 - 1/x5

參考: Physics king


收錄日期: 2021-04-19 14:29:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090524000051KK02035

檢視 Wayback Machine 備份