✔ 最佳答案
double integral主要有三種:
第一種是indefinite double integral,例如∫∫(x + y) dx dy和∫∫x dx dx。
第二種是definite double integral,例如∫12∫12 (x + y) dx dy和∫12∫12 x dx dx。
第三種是semi-definite semi-indefinite double integral,例如∫12∫(x + y) dx dy、∫∫12 (x + y) dx dy、∫12∫x dx dx和∫∫12 x dx dx。
如何化簡double integral?
1. 最基本的運算技巧
由最內層的integral開始化簡,直到最外層的integral化簡為止,期間遵守這個規則:like variables treat as variables, unlike variables treat as constants.
這方法適用於所有種類的double integral,包括indefinite double integral、definite double integral,甚至semi-definite semi-indefinite double integral。
例子一:
∫∫(x + y) dx dy
= ∫(x2/2 + xy + C1) dy
= (x2y)/2 + (xy2)/2 + C1y + C2
例子二:
∫12∫12 (x + y) dx dy
= ∫12 [x2/2 + xy]12 dy
= ∫12 (22/2 + 2y - 12/2 - 1y) dy
= ∫12 (y + 3/2) dy
= [y2/2 + 3y/2]12
= 22/2 + (3 2)/2 - 12/2 - (3 1)/2
= 3
例子三:
∫12∫(x + y) dx dy
= ∫12 (x2/2 + xy + C1) dy
= [(x2y)/2 + (xy2)/2 + C1y]12
= (x2 2)/2 + (x 22)/2 + C1 2 - (x2 1)/2 - (x 12)/2 - C1 1
= x2/2 + 3x/2 + C1
= x2/2 + 3x/2 + C
例子四:
∫∫12 (x + y) dx dy
= ∫[x2/2 + xy]12 dy
= ∫(22/2 + 2y - 12/2 - 1y) dy
= ∫(y + 3/2) dy
= y2/2 + 3y/2 + C
例子五:
http://hk.knowledge.yahoo.com/question/question?qid=7007071200404
例子六:
http://hk.knowledge.yahoo.com/question/question?qid=7007041604026
2. variables separable double integral
We can use this theorem:∫ab∫cd f(x)g(y) dx dy = ∫ab f(x) dx ∫cd g(y) dy
例子一:
∫12∫12 xy dx dy
= ∫12 x dx ∫12 y dy
= [x2/2]12 [y2/2]12
= (22/2 - 12/2)(22/2 - 12/2)
= 9/4
例子二:
http://hk.knowledge.yahoo.com/question/question?qid=7007102402012
例子三:
http://hk.knowledge.yahoo.com/question/question?qid=7008032801327
注意:這方法只適用於definite double integral、但不適用於indefinite double integral和semi-definite semi-indefinite double integral。
例如∫∫xy dx dy ≠ ∫x dx ∫y dy。
因為∫∫xy dx dy
= ∫((x2y)/2 + C1) dy
= (x2y2)/4 + C1y + C2
但∫x dx ∫y dy
= (x2/2 + C1)(y2/2 + C2)
= (x2y2)/4 + (C2x2)/2 + (C1y2)/2 + C1C2