工程數學之解differential system

2009-05-24 1:12 am
Given a differential system with a constant coefficient matrix,describe why we calculate the eigenvector for solving this differential system. Solve the following differential system:
y1' = -8y1 - 2y2
y2' = 2y1 - 4y2

回答 (1)

2009-05-24 2:23 pm
✔ 最佳答案
令 A = [-8 -2] 及 y = [ y1 ]
[2 -4] [ y2 ]
則原微分方程組可重寫成
dy/dx = A y .... (1)
先考量 A 的特徵值問題
(A - a I)v = 0 .... (2)
為避免無效解, 必須
det(A - a I) = 0 .... (3)
故得知
a = -6 .... (4)
是一個重根(即二個特徵值一樣). 將 (4) 代入 (2) 可相對應的特徵
向量為
v1 = [-2]
[2]
接著, 求第二個特徵向量
A v2 = a v1 + v2 => [-2 -2] v2 = [-2]
[2 2] [2]
故得知
v2 = [1]
[0]
所以取
V = [v1 v2] = [-2 1] .... (5)
[2 0]
令做標變換
y = V z .... (6)
將 (6) 代入 (1) 得
v dz/dx = A v z => dz/dx = (v-1 A v) z
=> dz/dx = [-6 1] z .... (7)
[0 -6]

z1' = -6 z1 + z2 .... (8a)
z2' = -6 z2 .... (8b)
(8b) 的一般解為
z2 = c2 exp(-6 x) .... (9)
其中 c2 為常數. 將 (9) 代入 (8a) 得
z1' + 6 z1 = c2 exp(-6 x) .... (10)
可解得
z1 = (c1 + c2 x) exp(-6 x) .... (11)
其中 c1 為常數.
再將 (9) 及 (11) 代入 (6) , 得知
y = V [c1 + c2 x] exp(-6 x)
[ c2 ]
即得
y1 = [-2 c1 + c2 (-2 x + 1)] exp(-6 x)
y2 = 2 (c1 + c2 x) exp(-6 x)


收錄日期: 2021-04-23 23:06:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090523000016KK06653

檢視 Wayback Machine 備份