LInear 1st order differential

2009-05-21 8:03 pm
y' - y tan(x) = sin^2 (x) ; y(0)=1

please use dy/dx +p(x)y=q(x)

y=1/R(x) integrate R(x)q(x) dx

R(x)= exp (integrate p(x) dx)

the answer is y=sec (x) (1/3 sin^3(x)+1)
please show how can u get the answer steps by steps, thanks!

回答 (1)

2009-05-21 10:25 pm
✔ 最佳答案
R(x)= exp (integrate p(x) dx)

integrate p(x)dx = integrate -tanx dx = integrate -sinx/cosx dx = integrate 1/cosx d(cosx) = ln(cosx)

R(x) = exp [ln(cos(x))] = cosx

y=1/R(x) integrate R(x)q(x) dx

integrate R(x)q(x) dx = integrate cos(x) sin^2(x) dx = integrate sin^2(x) d(sin(x)) = 1/3 sin^3(x) + c

so y = sec(x)(1/3 sin^3(x) + c)
y(0) = c = 1
finally y = sec(x) (1/3 sin^3(x) +1)


收錄日期: 2021-04-24 10:06:47
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090521000051KK00444

檢視 Wayback Machine 備份