sin^8θ+cos^8θ / sin^8θ-cos^8θ
Is there a simple way to solve sin^8θ+cos^8θ or sin^8θ-cos^8θ?
this is all i have to solve it
sinθ/cosθ = tanθ
sin^2θ+cos^2θ = 1
sinθ = cos(90-θ)
cosθ = sin(90-θ)
tanθ = 1/tan(90-θ)
and identities of polynomials
a^2 - b^2= (a+b)(a-b)
(a+b)^2 = a^2 + 2ab + b^2
(a-b)^2 = a^2- 2ab + b^2
回答 (4)
You mean "simplify sin^8θ+cos^8θ or sin^8θ-cos^8θ in terms of sinθ and cosθ "??
sin^8θ-cos^8θ
=(sin^4θ+cos^4θ)(sin^4θ-cos^4θ)
=(sin^4θ+cos^4θ)(sin^2θ-cos^2θ)(sin^2θ+cos^2θ)
=(sin^4θ+cos^4θ)(sinθ-cosθ)(sinθ+cosθ)//
Both sin^8θ+cos^8θ and sin^8θ-cos^8θare NOT equations.
Therefore, there is NO solution.
收錄日期: 2021-04-22 00:39:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090520000051KK01477
檢視 Wayback Machine 備份