integrate 2^x
integrate(1 to -1) 2^x dx
answer is 3/(2 (ln2)), please show how can u do it~, thanks!
回答 (4)
✔ 最佳答案
d/dx(2^x)=(2^x)(ln2)
∫2^x dx
= (2^x)/(ln2)+C
So integrate(1 to -1) 2^x dx
=[2/ln2]-[(-1)/ln2]
=(3/2ln2)
2009-05-15 14:17:14 補充:
根本上就不需要用substitution
integrate(1 to -1) 2^x dx
Sol
Note that d/dx(a^x) = a^x ln a, thus ∫a^x dx = a^x/(ln a)
Therefore,
∫2^x dx [1,-1]
= 2^x/ln 2 [1,-1]
=2 / ln 2 - 1 / (2 ln 2)
= 1/ ln 2 (2-1/2)
= 3/(2 ln 2)
2009-05-15 18:41:50 補充:
從d/dx(a^x)可得上題之答案^^
2009-05-16 22:00:14 補充:
確實不需要substitution.
Let y = 2^x
ln y = x ln 2
so y = e^(x ln 2)
That is to integrate e^(x ln 2)
Let x ln 2 = u
dx = du/ln 2
when x = 1, u = ln 2
when x = -1, u = - ln 2 = ln(1/2)
so the integral becomes
S e^udu/ln 2 = e^u/ln 2 from ln(1/2) to ln 2
= 2/ln 2 - 1/2ln 2
= 3/2 ln 2.
=
Let u = 2x
ln u = x ln 2
du/u = ln 2 dx
∫(-1 to 1) 2^x dx
= ∫(1/2 to 2) u du / u ln 2
= ∫(1/2 to 2) du / ln 2
= (2 - 1/2) ln 2
= 3/2 ln 2
2009-05-16 03:28:03 補充:
「根本上就不需要用 substitution」?
How to get d/dx(2^x)=(2^x)(ln2) or e^lnx = x ?
Does it involve substitution ?
Write (x+1)^2 - (x+1) - 2 = 0, then (x+1 -2)(x+1 + 1) = 0 really avoid substitution ?
We can't prove Pyth thm by cosine law.
收錄日期: 2021-04-26 13:44:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090515000051KK00577
檢視 Wayback Machine 備份