AMath -- integration

2009-05-15 7:54 am
∫sin^5 (2x)dx

回答 (4)

2009-05-15 8:12 pm
✔ 最佳答案
hawk_wing_1999

∫sin^5(2x)dx==∫sin^4(2x)sinxdx 呢步錯左!

2009-05-15 12:12:25 補充:
唔係呢個係咪002的意思呢?!

圖片參考:http://f.imagehost.org/0768/ScreenHunter_02_May_14_04_24.gif


2009-05-15 14:25:39 補充:
唔知呢個係咪001做法

2009-05-15 23:26:56 補充:
c_k_tse 既方法係STEVIE-G™ 做過的。

http://i707.photobucket.com/albums/ww74/stevieg90/04-7.gif
2009-05-16 2:24 am
我就不知我有沒有計錯,但計法就簡單很多

∫sin^5 (2x)dx

=∫sin^4 (2x) sin(2x)dx

=(-1/2)∫sin^4 (2x) dcos(2x)

=(-1/2)∫[sin^2(2x)]^2 dcos(2x)

=(-1/2)∫[1-cos^2(2x)]^2 dcos(2x)

=(-1/2)∫[1-2cos^2(2x)+cos^4(2x)] dcos(2x)

=(-1/2)[cos(2x) -(2/3)cos^3(2x) +(1/5)cos^5(2x) +C1]

=(-1/2)cos(2x) + (2/3)cos^3(2x) -(1/10)cos^5(2x) + C2
2009-05-15 9:07 pm
YES...答呢題冇諗到AMATH CUT左代入積分法~~
下邊的2個解答會較好!
2009-05-15 7:15 pm
上面的答案正確無誤
但就我所知amath已經cut左method of substitution
所以我提供一個唔使用substitution既方法計
不過呢個方法比substitution慢好多......
∫sin5(2x)dx
=∫sin4(2x)sinxdx
=∫[(1-cos4x)/2]2sinxdx
=∫[(1-2cos4x+cos24x)/4]sinxdx
=∫[1/4-cos4x/2+(1+cos8x)/8]sinxdx
=∫(3sinx/8-cos4xsinx/2+cos8xsinx/8)dx
=∫(3sinx/8-(sin5x-sin3x)/4+(sin9x-sin7x)/16)dx
=-3cosx/8+cos5x/20-cos3x/12-cos9x/144+cos7x/112+C, where C is a constant

2009-05-15 16:15:04 補充:
thx~超凡學生~
有得我揀我揀你做最佳~^^


收錄日期: 2021-04-15 19:53:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090514000051KK02163

檢視 Wayback Machine 備份