AMath -- integration
回答 (4)
我就不知我有沒有計錯,但計法就簡單很多
∫sin^5 (2x)dx
=∫sin^4 (2x) sin(2x)dx
=(-1/2)∫sin^4 (2x) dcos(2x)
=(-1/2)∫[sin^2(2x)]^2 dcos(2x)
=(-1/2)∫[1-cos^2(2x)]^2 dcos(2x)
=(-1/2)∫[1-2cos^2(2x)+cos^4(2x)] dcos(2x)
=(-1/2)[cos(2x) -(2/3)cos^3(2x) +(1/5)cos^5(2x) +C1]
=(-1/2)cos(2x) + (2/3)cos^3(2x) -(1/10)cos^5(2x) + C2
YES...答呢題冇諗到AMATH CUT左代入積分法~~
下邊的2個解答會較好!
上面的答案正確無誤
但就我所知amath已經cut左method of substitution
所以我提供一個唔使用substitution既方法計
不過呢個方法比substitution慢好多......
∫sin5(2x)dx
=∫sin4(2x)sinxdx
=∫[(1-cos4x)/2]2sinxdx
=∫[(1-2cos4x+cos24x)/4]sinxdx
=∫[1/4-cos4x/2+(1+cos8x)/8]sinxdx
=∫(3sinx/8-cos4xsinx/2+cos8xsinx/8)dx
=∫(3sinx/8-(sin5x-sin3x)/4+(sin9x-sin7x)/16)dx
=-3cosx/8+cos5x/20-cos3x/12-cos9x/144+cos7x/112+C, where C is a constant
2009-05-15 16:15:04 補充:
thx~超凡學生~
有得我揀我揀你做最佳~^^
收錄日期: 2021-04-15 19:53:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090514000051KK02163
檢視 Wayback Machine 備份