sin and cos

2009-05-13 10:13 pm
x=cost , y=sint,
find (d^2 y)/ (d x^2),

the answer is -1/sin^3 t, please show how u do it~thanks

回答 (2)

2009-05-13 11:33 pm
✔ 最佳答案
x=cost , y=sint,find (d^2 y)/ (d x^2),
Sol
dy/dx
=(dy/dt)*(dt/dx)
=(dy/dt)*[dx/dt)]^(-1)
=(dsint/dt)*[dcost/dx]^(-1)
=cost*[-sint]^(-1)
=-cott
so
(d^2y)/(dx^2)
=-dcott/dx
=-dcott/dt*(dt/dx)
=csc^2t*(dx/dt)^(-1)
=csc^2t*(dcost/dt)^(-1)
=csc^2t*(-sint)^*(-1)
=-csc^2t*csct
=-csc^3t
=-1/sin^3t
2009-05-14 12:49 am
x^2 + y^2 = cos^2 t + sin^2 t = 1
2x + 2y(dy/dx) = 0
dy/dx = -x/y
d^2 y/dx^2 = [-y + x (dy/dx)]/y^2
= [-y + x(-x/y)]/y^2
= [-y - x^2/y]/y^2
= -(y^2 + x^2)/y^3
= -1/y^3
= -1/sin ^3 t.



收錄日期: 2021-04-25 22:36:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090513000051KK00664

檢視 Wayback Machine 備份