Scalar product of two vectors

2009-05-05 5:12 am
u and v are vectors.
Let u=(cosα)i+(sinα)j and v=(cosβ)i+(sinβ)j,
where 0<α<β<π/2.

a)Find the angle between the vectors u+v and u-v.

b)If|u|=|u-v|,find the value of β-α.

ans a)π/2

ans b)π/3

回答 (2)

2009-05-05 6:50 am
✔ 最佳答案
a)
u+v=[(cosα)i+(sinα)j]+[(cosβ)i+(sinβ)j]
=(cosα+cosβ)i+(sinα+ sinβ)j

u-v=[(cosα)i+(sinα)j]-[(cosβ)i+(sinβ)j]
=(cosα-cosβ)i+(sinα-sinβ)j

(u+v).(u-v)= [(cosα+cosβ)i+(sinα+ sinβ)j][(cosα-cosβ)i+(sinα-sinβ)j]
=(cosα+cosβ)(cosα-cosβ)+(sinα+ sinβ)(sinα-sinβ)
=(cos2α-cos2β)+ (sin2α-sin2β)
=(sin2α+ cos2α)- (sin2β+ cos2β)
=1-1
=0



Let the required angle be θ.

圖片參考:http://g.imagehost.org/0013/ScreenHunter_01_May_03_21_21.gif


cos2α+cos2β=(cosα-cosβ)2+(sinα-sinβ)2
1=( cos2α+cos2β-2cosαcosβ)+ (sin2α+sin2β-2sinαcosα)
1=( sin2α+cos2α)+ (sin2β+cos2β)-2(cosαcosβ+ sinαcosα)
1=1+1-2cos(α-β)
1=2cos(α-β)
1/2= cos(α-β)
1/2= cos(β-α)
β-α=π/3


2009-05-05 5:42 am
(a) (u + v) and ( u - v) is equivalent to the diagonals of a parallelogram with u and v as the 2 sides.
Since magnitude of u = magnitude of v = 1, so it is a rhombus. Therefore, angle between the 2 diagonals = 90 degrees which is the property of a rhombus. That means angle between (u + v) and (u - v) is 90 degree.
(b) If magnitude of u = magnitude of (u -v), that means u, v and ( u-v) formed an equilateral triangle, so angle between the vectors = 60 degree.
That is beta - alpha = 60 degree.




收錄日期: 2021-04-23 20:36:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090504000051KK01695

檢視 Wayback Machine 備份