數學難題x2

2009-04-22 2:05 am
1. 如圖,在矩形 ABCD 中,∠AEH=∠BEF,∠BFE=∠CFG,∠CGF=∠DGH,∠DHG=∠AHE,若AB= a ,BC= b ,則四邊形EFGH的周界是多少?(以 a、b 表示)

圖:http://i430.photobucket.com/albums/qq21/15426876356/pic06.jpg

2. 在∆ABC中,∠C= 90度,AC= 3,CB= 4 ,在∆ABD中,∠BAD=90度,AD= 12 ,點 C 和 D 分居 AB 兩側,過D作平行於AC的直線交 CB 於點 E,則 DE : DB =?

回答 (2)

2009-04-22 4:08 pm
✔ 最佳答案
Q1.
For EFGH to be a quadrilateral and to satisfy the conditions stated in the question, it must be a parallelogram (any) with sides parallel to the 2 diagonals of rectangle ABCD. For easy calculation, let EFGH be a rhombus with sides parallel to AC and BD, so perimeter = 4 x sqrt[(a/2)^2 + (b/2)^]
= 2 sqrt(a^2 + b^2).
Q2.
Let angle ABC = a, so tan a = 3/4, sin a = 3/5 and cos a = 4/5.
Let angle DBA = b, so tan b = 12/5, sin b = 12/13 and cos b = 5/13.
From triangle DBE, DE/DB = sin ( angle DBE) = sin [ 180 - a - b]
= sin(a + b) = sin a cos b + cos a sin b = (3/5)(5/13) + (4/5)(12/13)
= 15/65 + 48/65 = 63/65.
Therefore, DE : DB = 63 : 65.

2009-04-24 3:38 am
可證 △AEH~△BEF 及 △CGF≡△DGH。
四邊形 EFGH 是平行四邊形。


收錄日期: 2021-04-25 22:36:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090421000051KK01045

檢視 Wayback Machine 備份