三角函數最大值問題

2009-04-14 4:02 am
http://i43.tinypic.com/zj816p.jpg

吾該教下我
thx

回答 (2)

2009-04-14 5:37 am
✔ 最佳答案
12.y=sin^2x+sinxcosx+cos2x
y=(1/2)(1-cos2x)+(1/2)sin2x+cos2x
y=(1/2)-(1/2)cos2x+(1/2)sin2x+cos2x
y=(1/2)+(1/2)sin2x+(1/2)cos2x
y=(1/2)(1+sin2x+cos2x)
y=(1/2)[1+sqrt(2)cos(2x-pi/4)]
極大值=(1/2)[1+sqrt(2)(1)]
=[1+sqrt(2)]/2
x值:2x-pi/4=0
x=pi/8

13.y=sinxcosx+sinx+cosx+2
=sin2x/2+sqrt(2)cos(x-pi/4)+2
考慮sin2x/2及cos(x-pi/4)
當x=pi/4時,雙方同時達最大值
最大值=1/2+sqrt(2)(1)+2
=5/2+sqrt(2)


收錄日期: 2021-04-22 00:39:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090413000051KK01899

檢視 Wayback Machine 備份