興趣 integral 之 6
回答 (4)
STEVIE-G™ :
我發現無須分case都行,無論遇到什麼情況 A=B , A= -B 也好
這個積分也可以用第三個來表示,
2/sqrt[(A-B)(A+B)] * arctan{ sqrt[(A-B)/(A+B)] tan(x/2) ] }
當遇到 A=B , A=-B 的時候, 只要取極限便可
lim x->0 arctanax / x = a
IN [1/(A+Bcosx) dx]
IN [udv] = uv - IN [vdu]
u = 1/(A+Bcosx) v = x
IN [1/(A+Bcosx) dx]
= x / (a+bcosx) - IN [x d(A+Bcosx)]
= x / (a+bcosx) - B * IN [x d(cosx)]
= x / (a+bcosx) - B (xcosx - IN [ cosx dx])
= x / (a+bcosx) - B (xcosx - sinx + C)
= x / (a+bcosx) - Bxcosx + Bsinx + C
參考: IN [udv] = uv - IN [vdu]
Let I be the given integral .
If A = B, I = (1/A)tan(θ/2) + C
If A > B, I = [2/√(A^2-B^2)] arctan { √[(A-B)/(A+B)]tan(θ/2)} + C
If A < B, I = [1/√(B^2-A^2)] ln │ {tan(θ/2) + √[(B+A)/(B-A)]} / {tan(θ/2) - √[(B+A)/(B-A)]} │+ C
in each case where C is a constant.
2009-04-08 18:30:01 補充:
If A = -B, I = 1/[B tan(θ/2)] + C
If A <> -B and A > B, ...
If A <> -B and A < B, ...
收錄日期: 2021-04-22 00:42:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090408000051KK01289
檢視 Wayback Machine 備份