✔ 最佳答案
y = (2sin@ - 3)2 + 1
Differentiate with respect to @
dy/d@ = d/d@ [(2sin@ - 3)2 + 1]
= d((2sin@ - 3)2 )/d(2sin@ - 3) X d(2sin@ - 3)/d@ + d(1)/d@ (Chain rule)
= 2(2sin@ - 3)(2cos@)
= 4cos@(2sin@ - 3)
Differentiate with respect to @
d2y/d@2 = 4cos@d(2sin@ - 3)/d@ + 4(2sin@ - 3)d(cos@)/d@ (Product rule)
= 8cos2@ - 4sin@(2sin@ - 3)
= 8(cos2@ - sin2@) + 12sin@
To find the extreme values, put dy/d@ = 0
4cos@(2sin@ - 3) = 0
cos@ = 0 or sin@ = 3/2 (rejected, since -1 <= sin@ <= 1)
@ = 90* or 270*
For @ = 90*, d2y/d@2 = 4 > 0
For @ = 270*, d2y/d@2 = -20 < 0
So, y attains maximum when @ = 270* and minimum when @ = 90*
Max of y = (2sin270* - 3)2 + 1 = 26
Min of y = (2sin90* - 3)2 + 1 = 2
2009-04-04 10:27:50 補充:
首先先求dy/d@,用連鎖法則(chain rule)
再求出d^2y/d@^2以便求證極值是極大或極小值,用product rule
求出極值,代dy/d@ = 0
接著求出@值,代入d^2y/d@^2,如果 < 0,y就是極大值
如果是 > 0,y就是極小值
接著代這些@的值入y便可求出極值。
2009-04-04 10:41:24 補充:
多謝螞蟻雄兵的建議...
可惜這就是香港考試制度的弊病... 如果這題不用f"(@)的話,在CE a.maths卷是會失分的...
2009-04-04 10:41:38 補充:
考試制度太死板了...