試用微分法求極大值及極小值

2009-04-04 6:16 pm
以微分法求極大值及極小值:

0度<=Θ<=360度

y=(2sinΘ-3)^2+1

thx

回答 (3)

2009-04-04 6:25 pm
✔ 最佳答案
y = (2sin@ - 3)2 + 1

Differentiate with respect to @

dy/d@ = d/d@ [(2sin@ - 3)2 + 1]

= d((2sin@ - 3)2 )/d(2sin@ - 3) X d(2sin@ - 3)/d@ + d(1)/d@ (Chain rule)

= 2(2sin@ - 3)(2cos@)

= 4cos@(2sin@ - 3)

Differentiate with respect to @

d2y/d@2 = 4cos@d(2sin@ - 3)/d@ + 4(2sin@ - 3)d(cos@)/d@ (Product rule)

= 8cos2@ - 4sin@(2sin@ - 3)

= 8(cos2@ - sin2@) + 12sin@


To find the extreme values, put dy/d@ = 0

4cos@(2sin@ - 3) = 0

cos@ = 0 or sin@ = 3/2 (rejected, since -1 <= sin@ <= 1)

@ = 90* or 270*

For @ = 90*, d2y/d@2 = 4 > 0

For @ = 270*, d2y/d@2 = -20 < 0

So, y attains maximum when @ = 270* and minimum when @ = 90*

Max of y = (2sin270* - 3)2 + 1 = 26

Min of y = (2sin90* - 3)2 + 1 = 2




2009-04-04 10:27:50 補充:
首先先求dy/d@,用連鎖法則(chain rule)
再求出d^2y/d@^2以便求證極值是極大或極小值,用product rule

求出極值,代dy/d@ = 0

接著求出@值,代入d^2y/d@^2,如果 < 0,y就是極大值

如果是 > 0,y就是極小值

接著代這些@的值入y便可求出極值。

2009-04-04 10:41:24 補充:
多謝螞蟻雄兵的建議...
可惜這就是香港考試制度的弊病... 如果這題不用f"(@)的話,在CE a.maths卷是會失分的...

2009-04-04 10:41:38 補充:
考試制度太死板了...
參考: Physics king
2009-04-04 10:17 pm
未必要歸咎考試制度,問題解決了,對於學習數學可能還不夠。
懂得一題多解,了解不同的解題方法,或更有裨益。
2009-04-04 6:37 pm
以微分法求極大值及極小值:0度<=Θ<=360度,y=(2sinΘ-3)^2+1
sol
f(Θ)=(2sinΘ-3)^2+1
f'(Θ)=2(2sinΘ-3)*2cosΘ
當 f'(Θ)=0 時 sinΘ=3/2(reject) 或 cosΘ=0
(1) sinΘ=1
y=(2*1-3)^2+1=2
(2) sinΘ=-1
y=(2*(-1)-3)^2+1=26
so 極大值=26,極小值=2 *本題沒必要求f"(Θ)

2009-04-04 10:37:57 補充:
傳統方法
1>=sinΘ>=-1
2>=2sinΘ>=-2
2-3>=2sinΘ-3>=-2-3
-1>=2sinΘ-3>=-5
2sinΘ-3 沒通過 0
25>=(2sin2Θ-3)^2>=1
26>=(2sin2Θ-3)^2+1>=2


收錄日期: 2021-04-19 14:07:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090404000051KK00334

檢視 Wayback Machine 備份