fractional part function

2009-04-01 7:56 am
Define [x] as the largest integer not greater than x,
e.e. [3.15]=3. Let {x}=x-[x].
Find a certain number x such that {x}+{1/x}=1
我有answer但係冇solution,而且諗左好耐都冇頭緒,
希望大家幫手解答...thz!!!
更新1:

第二行打錯字,係e.g.先岩,sor

回答 (2)

2009-04-02 12:22 am
✔ 最佳答案
If x >= 1, let n-1 <= x < n for some integer n >= 2.

{x} + {1/x} = 1
x - (n - 1) + 1/x = 1
x - n + 1/x = 0
x^2 - nx + 1 = 0
x = [n +/- √(n^2 - 4)] / 2


If x <= -1, let -n <= x < -n + 1 for some integer n >= 2.

{x} + {1/x} = 1
x - (-n) + 1/x + 1 = 1
x + n + 1/x = 0
x^2 + nx + 1 = 0
x = [-n +/- √(n^2 - 4)] / 2


For 0 < x < 1 and -1 < x < 0, we have similar results(you can try).


Solution for {x} + {1/x} = 1:
x = [+/-n +/- √(n^2 - 4)] / 2 for ineger n >= 2

(note: when n = 2, x = 1 or -1)

2009-04-01 16:23:11 補充:
'ineger' in last two line should be integer

2009-04-01 19:41:40 補充:
CORRECTION (x <> +/- 1)

When n = 2, x = 1 or -1 (rejected)

Solution for {x} + {1/x} = 1:
x = [+/-n +/- √(n^2 - 4)] / 2 for integer n >= 3
2009-04-01 10:48 am
Can I answer this in English? The answer I think is

((n+1) + ((n+1)^2 - 4) ^ (1/2)) / 2
((n+1) - ((n+1)^2 - 4) ^ (1/2)) / 2
(-(n+1) + ((n+1)^2 - 4) ^ (1/2)) / 2
(-(n+1) - ((n+1)^2 - 4) ^ (1/2)) / 2
for n = 2, 3, 4, ....


收錄日期: 2021-04-30 13:01:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090331000051KK02062

檢視 Wayback Machine 備份