✔ 最佳答案
If x >= 1, let n-1 <= x < n for some integer n >= 2.
{x} + {1/x} = 1
x - (n - 1) + 1/x = 1
x - n + 1/x = 0
x^2 - nx + 1 = 0
x = [n +/- √(n^2 - 4)] / 2
If x <= -1, let -n <= x < -n + 1 for some integer n >= 2.
{x} + {1/x} = 1
x - (-n) + 1/x + 1 = 1
x + n + 1/x = 0
x^2 + nx + 1 = 0
x = [-n +/- √(n^2 - 4)] / 2
For 0 < x < 1 and -1 < x < 0, we have similar results(you can try).
Solution for {x} + {1/x} = 1:
x = [+/-n +/- √(n^2 - 4)] / 2 for ineger n >= 2
(note: when n = 2, x = 1 or -1)
2009-04-01 16:23:11 補充:
'ineger' in last two line should be integer
2009-04-01 19:41:40 補充:
CORRECTION (x <> +/- 1)
When n = 2, x = 1 or -1 (rejected)
Solution for {x} + {1/x} = 1:
x = [+/-n +/- √(n^2 - 4)] / 2 for integer n >= 3