✔ 最佳答案
(C)
(1)先證明 a^n+b^n>= 2^(n+1)
n=1 即Q(b) holds
a^n+b^n >= 2√(a^n b^n)= 2(ab)^(n/2) (note: 1/a+1/b=1=> a+b=ab)
= 2(a+b)^(n/2) >= 2* 4^(n/2) = 2^(n+1)
by M.I. => a^n + b^n >= 2^(n+1) ------(A)
(2)證明本題
(a+b)^(n+1) - a^(n+1) - b^(n+1)
= (a+b)(a+b)^n - a^(n+1)- b^(n+1)
>= (a+b)[ a^n+b^n + 2^(2n) - 2^(n+1) ] - a^(n+1) - b^(n+1)
= a^(n+1)+b^(n+1) + ab^n+ba^n +(a+b)[2^(2n)-2^(n+1)] - a^(n+1)-b^(n+1)
= ab[ a^(n-1)+b^(n-1)] + 4[ 2^(2n)- 2^(n+1)] (note: ab= a+b>= 4)
>= 4* 2^n + 4[2^(2n)- 2^(n+1)] ----( by (A) )
= 2^(2n+2) - 2^(n+2)
by MI. QED.
HI! 祝考試順利,好成績要告知喔!
2009-03-29 20:38:21 補充:
note: 樓上的作法有點問題
In fact, (a+b)^n - a^n - b^n 有可能等於 2^(2n)- 2^(n+1) ( when a=b=2 )
2009-03-29 20:40:57 補充:
a^n+b^n >= 2^(n+1) 沒有用 MI證明! so, (A)式不用寫 " by M.I. "
2009-03-29 21:06:43 補充:
倒數第3式
= ab[ a^(n-1)+b^(n-1)] + 4[ 2^(2n)- 2^(n+1)]
更正為:
>= ab[ a^(n-1)+b^(n-1)] + 4[ 2^(2n)- 2^(n+1)]
2009-03-30 19:54:44 補充:
如何從part A中得知a^n + b^n >= 2^(n + 1) ?
1/a+1/b=1 =>ab=a+b >= 4
a^n+b^n >= 2 √(ab)^n >= 2* √4^n= 2^(n+1)
so, a^n+b^n >= 2^(n+1) (for all n>= 1)
2009-03-30 21:19:51 補充:
MI之最後兩步:
ab[a^(n-1)+b^(n-1)] (Note: ab=a+b >= 4, a^(n-1)+b^(n-1)>= 2^n )
>= 4*2^n