純數-多項式II

2009-03-29 12:51 am
C PART個度...唔識點由α係g(x)=0既根推去α係f(x)=0的二重根///


圖片參考:http://i707.photobucket.com/albums/ww74/stevieg90/0mr1.gif

回答 (3)

2009-03-29 1:25 am
✔ 最佳答案
part c: 我相信你能夠證明only if part,即給了α是f(x) = 0的二重根,因此證明α是g(x) = 0的根。

你的問題是證明if part,即由α是g(x) = 0推論至α是f(x) = 0的二重根。

根據part b,(4x + a)f'(x) = 16f(x) + g(x) ... (1)

由於題目給了α是f(x) = 0的根,條件亦給了α是g(x) = 0的根

因此,式(1)的右方: 16f(x) + g(x) = (x - α)Q(x),Q(x)為一多項式

由於α (不等於-a / 4)是f(x) = 0的根,所以式(1)可表達成:

f'(x) = (x - α)Q(x) / (4x + a),x =/= -a/4

= (x - α)P(x),P(x)為另外的多項式

所以證明了α是f(x) = 0的根,亦是f'(x) = 0的根

因此,α是f(x) = 0的二重根。



2009-03-28 17:28:39 補充:
我相信你有能力把我的中文解答轉成英文吧...
參考: Physics king
2009-03-29 5:54 am
" only if " part :

let α be the repeated root of f(x)

s.t. f(α)= 0 and f'(α)=

16f(x)=(4x+a)f'(x)-g(x)

=>16f(α)=(4α+a)f'(α)-g(α)

=>g(α)=o

so α is the root of g(x)

" if " part

Let α be the root of g(x) and f(x)

s.t. g(α)=f(α)=0

16 f(x)=(4x+a)f'(x)-g(x)

=> 16 f(α) = (4α+a) f'(α) -g(α)

=> f'(α)=0

so α is a repeated root of f(x)=0

α is a repeated root of f(x) = 0 <=> α is root of g(x)=0
2009-03-29 1:46 am
Use @ to represent alpha.

Suppose @ is a root of g(x) = 0,

By (b),
16f(@) = (4@ + a)f'(@) - g(@)
0 = (4@ + a)f'(@) [ since @ is a root of f(x) = 0 and g(x) = 0 ]
f'(@) = 0 [ since @ <> -a/4 ]

Therefore @ is a repeated root of f(x)


收錄日期: 2021-04-19 13:46:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090328000051KK01193

檢視 Wayback Machine 備份