✔ 最佳答案
Please refer to the following links:
http://i601.photobucket.com/albums/tt95/physicsworld9999/physicsworld01Mar160930.jpg
http://i601.photobucket.com/albums/tt95/physicsworld9999/physicsworld02Mar160930.jpg
http://i601.photobucket.com/albums/tt95/physicsworld9999/physicsworld03Mar160930.jpg
Let f(a, b, c) = a^3(b^2 - c^2) + b^3(c^2 - a^2) + c^3(a^2 - b^2)
which is a homogeneous cyclic polynomial of degree 5.
Put a = b,
f(b, b, c) = b^3(b^2 - c^2) + b^3(c^2 - b^2) + 0 = 0
Similarly, f(a, c, c) = f(a, b, a) = 0
Hence, f(a, b, c)
= (a - b)(b - c)(c - a)[k(ab + bc + ca) + l(a^2 + b^2 + c^2)]
Comparing coefficients of ab^4, l = 0
Comparing coefficients of a^2b^3, k = -1
Therefore, a^3(b^2 - c^2) + b^3(c^2 - a^2) + c^3(a^2 - b^2)
= -(a - b)(b - c)(c - a)(ab + bc + ca)