點解 0! = 1 ?

2009-03-13 8:07 pm
點解 0! = 1 ?
我f.5,,
請簡單dd解釋~ 謝

回答 (3)

2009-03-14 12:36 am
✔ 最佳答案
By the definition of nCr

nCr=n!/[(n-r)!xr!]

the first term of the binomial expression (x+1)^n is

(nCn)x^n

=n!/n!(0!)x^n

If 0! <> 1 , then the first and the last term 's coeff. is not 1 , and it is not true.

So 0! must equal to 1 , you may treat it as definition too.
參考: by myself
2009-03-13 8:45 pm
除左上面所答的, recurrence relation
圖片參考:http://upload.wikimedia.org/math/0/4/f/04f0de9cd29fc21e0bb3bf57a31a760b.png
works for n = 0 之外.
我試下用中五學生可以理解的例子來答!

nCr, 學左啦!

nCr = n! / (r!)(n-r)!
咁如果n=0, r又=0,

圖片參考:http://upload.wikimedia.org/math/6/1/c/61c7fc770aebe276db140466fabdd954.png

雖然用nCr來解factorial,唔可以叫好好.
不過, 希望你可以明啦!
2009-03-13 8:19 pm
呢個係定義,無得解 ...

有左呢個定義,可以帶來一些運算上的便利,如 (n + 1)! = n! * (n + 1) ,或者其他 combination / permutation 的計算。



收錄日期: 2021-04-15 21:04:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090313000051KK00457

檢視 Wayback Machine 備份