Angle of triangle

2009-03-10 11:34 pm
For triangle ABC ( order in anti-clockwise direction), D is a point on AC such that angle DBC = 50 degree and angle BDC = 105 degree. AB = DC. Find angle BAC ( to the nearest degree.)

回答 (2)

2009-03-11 12:37 am
✔ 最佳答案
Note : (d) = degree

Let x be the angle BAC.

In triangle BDC, by sine law,

DC / sin 50(d) = BC / sin 105(d) ---------- (1)

In triangle ABC, by sine law,

BC / sin x = AB / sin 25(d) ---------------- (2)

From (1) : DC = [BC sin 50(d)] / sin 105(d) ----- (3)

Since AB = DC, sub. (3) into (2)

BC / sin x = {[BC sin 50(d)] / sin 105(d)} / sin 25(d)

____sin x = sin 25(d) / [sin 50(d) / sin 105(d)]

____sin x = 0.532890614

_______x = 32.20097083(d)

Therefore, the angle BAC = 32(d) (to the nearest degree)
2009-03-11 12:17 am
Angle BAC=25 degree
Because angle BCA=25 degree(180-105-50), AB=DC(iss. triangle)
So angle BAC=25 degree


收錄日期: 2021-04-13 16:29:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090310000051KK00774

檢視 Wayback Machine 備份