difference equation

2009-03-06 2:24 pm
https://www8.imperial.ac.uk/content/dav/ad/workspaces/mathematics/students/ug/course_material/m1m2ac2.pdf

Q.3

THANKS
更新1:

呢條 LINK先岩 : http://www.mathhelpforum.com/math-help/attachments/urgent-homework-help/10421d1236292015-difference-equation-game.jpg

回答 (2)

2009-03-09 9:51 am
✔ 最佳答案
題目只是要求解所給予的差分方程和計算最後的limit,所以只需按標準方法(characteristic function+initial condition)就可以了。至於如何得出該方程,不需要花時間去想,因為那條方程本身是錯的(所以題目才會強調CONJECTURE)。

2009-03-09 01:51:30 補充:
Tn=4T(n-1)-2T(n-2)
characteristic equation is
x^2 = 4x - 2
x= 2+sqrt(2) or 2-sqrt(2)
So Tn = A(2+sqrt(2))^n + B(2-sqrt(2))^n.
Put T0=1, T1=2, we get
A=B=1/2. ie, Tn = [(2+sqrt(2))^n + (2-sqrt(2))^n]/2.

For the limit, observe that
(2+sqrt(2))^n /2< Tn < (2+sqrt(2))^n
So ln(2+sqrt(2)) - (ln2)/n < ln(Tn)/n < ln(2+sqrt(2))
By sandwich theorem, when n tends to infinity,
lim(lnTn)/n = ln(2+sqrt(2))
2009-03-08 6:10 am
can u solve it for me PLEASE?

2009-03-10 04:52:21 補充:
where is the sketchof the arrangements for the case n=2 ...?
thanks


收錄日期: 2021-04-28 23:57:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090306000051KK00235

檢視 Wayback Machine 備份