✔ 最佳答案
(1)
y = x (ln x)^2
dy/dx
= d[x (ln x)^2]
= (x)d[(ln x)^2] + [(ln x)^2]d(x)
= x[2(In x)]d(In x) + (In x)^2
= 2x(In x)(1/x) + (In x)^2
= 2Inx + (In x)^2
= (In x)(2 + In x)
(2)
y = (e^x - e^-x) / (e^x+e^-x)
=> y = { [e^(-x)] [e^(2x) -1] } / { [e^(-x)] [e^(2x)+1 ] }
=> y = [e^(2x)-1] / [e^(2x)+1]
Consider
In y = In[e^(2x)-1] - In[e^(2x)+1]
Differentiate both sides,
=> (1/y)(dy/dx) = {1/[e^(2x)-1] }d[e^(2x)-1]- {1/[e^(2x)+1] } d[e^(2x)+1]
=> (1/y)(dy/dx) = [2e^(2x)] / [e^(2x)-1] - [2e^2x] / [e^(2x)+1]
=> dy/dx = (y)[2e^(2x)] {1/ [e^(2x)-1] - 1/[e^(2x)+1]}
=> dy/dx = {[e^(2x)-1] / [e^(2x)+1]} [2e^(2x)] {1/ [e^(2x)-1] - 1/[e^(2x)+1]}
=> dy/dx = {[e^(2x)-1][2e^(2x)] }{1/ [e^(2x)-1] - 1/[e^(2x)+1]} / [e^(2x)+1]
=> dy/dx = {[e^(2x)-1][2e^(2x)]/ [e^(2x)+1]}{[e^(2x)+1] - [e^(2x)-1]} / {[e^(2x)+1][e^(2x)-1]}
=> dy/dx = {[e^(2x)-1][2e^(2x)]/ [e^(2x)+1]}{ 2 / {[e^(2x)+1][e^(2x)-1]} }
=> dy/dx = {2[e^(2x)-1][2e^(2x)]} / {[e^(2x)+1][e^(2x)+1][e^(2x)-1]}
=> dy/dx = {2[2e^(2x)]} / {[e^(2x)+1][e^(2x)+1]}
=> dy/dx = 4e^(2x) / { [e^(2x)+1]^2 }