f.4 a.maths (20points!!)

2009-03-03 2:36 am
It is given that 9cosθ- 40sinθ= rcos(θ+β),where r>0 andβis
an acute angle. find:

(a)Let x= 1÷ ( |9cosθ- 40sinθ| + 19), find the range of values
of x. ( " |"呢個係 absolute value)

(b)Let y = (9cosθ- 40sinθ)÷(9cosθ- 40sinθ+50),find the range of values of y.


THX~!請列steps~

回答 (1)

2009-03-03 5:30 am
✔ 最佳答案
(a) 9 cosθ- 40 sinθ= √(92 + 402) [cos θ/√(92 + 402) - 40 sin θ/√(92 + 402)]
= 41 [(cos θ)/41 - (40 sin θ)/41]
= 41 cos (θ + 88.6)
So, 0 <= |9 cosθ- 40 sinθ| <= 41
19 <= |9 cosθ- 40 sinθ| + 19 <= 60
1/60 <= 1/(|9 cosθ- 40 sinθ| + 19) <= 1/41
(b) y = (9cosθ- 40sinθ)/(9cosθ- 40sinθ+ 50)
= 1 - 50/(9cosθ- 40sinθ+ 50)
= 1 - 50/[41 cos (θ + 88.6) + 50]
-41 <= 41 cos (θ + 88.6) <= 41
9 <= 41 cos (θ + 88.6) + 50 <= 91
1/91 <= 1/[41 cos (θ + 88.6) + 50] <= 1/9
50/91 <= 50/[41 cos (θ + 88.6) + 50] <= 50/9
-50/91 >= -50/[41 cos (θ + 88.6) + 50] >= -50/9
41/91 >= 1 - 50/[41 cos (θ + 88.6) + 50] >= -41/9
參考: Myself


收錄日期: 2021-04-13 16:29:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090302000051KK01163

檢視 Wayback Machine 備份