有關一個數字能否被3除的疑問

2009-03-02 5:18 am
大家都知道:如果一個數能否被3除是看它加起來的數字是否被3除到.

如:365 (3+5+6=14,14不能被3除,所以165也不能被3除)

可是,真正的原理是什麼?
為什麼籍此方法就能知一個數能否被3除?

當中有什麼數學原理?

回答 (3)

2009-03-02 5:38 am
✔ 最佳答案
如果一個數字 N = AnAn-1An-2 ... A3A2A1A0
注意 Ax 是該數位之數字

如 A0 指個位數字

咁 N 的數值為:
N
= An x 10^n + An-1 x 10^(n-1) + ... + A1 x 10 + A0
= An x (1+9)^n + An-1 x (1+9)^(n-1) + ... + A1 x (1+9) + A0

考慮 (1+9)^n
= 1 + nC1 (9) + nC2 (9^2) + ...
= 1 + 9M

所以 N
= (An + An-1 + ... + A2 + A1 + A0) + 9M

由於 9M 必可給 3 整除,
所以只須考慮 (An + An-1 + ... + A2 + A1 + A0) 可否給 3 整除便行了
2009-03-03 12:12 am
I don't know that
I only know some things about it.

If the sum like this365=3+5+6=14,14/3=4...2
All the remainder that (sum/3=x...1)=y.333...
All the remainder that (sum/3=z...2)=a.666...
2009-03-02 5:45 am
Let a 4 digit number be abcd, so its value
= 1000a + 100b + 10c + d
= 999a + 99b + 9c + ( a + b + c + d).
999a is divisible by 3,
99b is divisible by 3,
9c is divisble by c and
a + b + c + d is divisible by 3.
So the number abcd is divisible by 3.
The same reasoning can apply to number with any digits.




2009-03-01 21:46:56 補充:
Using the same reasoning, if the sum of digits is divisible by 9, the number is divisible by 9

2009-03-01 21:48:46 補充:
Correction: 9c is divisible by 3, not only c.


收錄日期: 2021-04-13 16:28:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090301000051KK02303

檢視 Wayback Machine 備份