Gauss' Theorem

2009-02-28 8:41 pm
R=(x,y,z)

r = (x^2 + y^2 + z^2)^(1/2)

i): Show that (Δ ∙ F) = 0 if F has the form kR/r^3 where r not equal to 0

(ii): Show that if F has the form kR/r^3

∫∫ F ∙ ndS = 4pi

where the boundary is the sphere of radius 1 center at (0,0,0)
更新1:

Δ = nabla

回答 (1)

2009-03-01 3:11 am
✔ 最佳答案
(i) R=(x,y,z)
∇. F
=k[∂/∂x(x/r^3)+∂/∂x(x/r^3)+∂/∂x(x/r^3)]
=k{[r^3-x3r^2(x/r)]/r^6+[r^3-y3r^2(y/r)]/r^6+[r^3-z3r^2(z/r)]/r^6}
=k{[r^3-3x^2r]/r^6+[r^3-3y^2r]/r^6+[r^3-3z^2r]/r^6}
=k{[3r^3-3r^3]/r^6}
=0
(ii)
Since n=(x/r,y/r,z/r), F ∙ n=(x^2+y^2+z^2)/r^4
∫∫ F ∙ ndS
=∫∫(x^2+y^2+z^2)/r^4 dS
=r^(-2) ∫∫ dS
=4 pi [The boundary is the sphere of radius r center at (0,0,0)]

∫∫ F ∙ ndS


收錄日期: 2021-04-26 13:15:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090228000051KK00676

檢視 Wayback Machine 備份