AMATHS - Vectors

2009-02-24 2:41 am
Vectors in the two-dimensional space

Q.14Consider an unit vector u = (square root of 3)/2 i + 1/2j .
If a = 5i + 5*(square root of 3)j , find the component of A along a line perpendicular to U.

唔係太明點解..><
希望大家解答時詳細d,,令我明白!!!感謝!!!

( u = 開方3/2 i + 1/2 j 而 a = 5i + 5乘開方3 j )

回答 (2)

2009-02-24 2:59 am
✔ 最佳答案
因A可以分成2個分量﹐一個與U平行﹐一個與U垂直
u = √3/2 i + 1/2 j 而 A = 5i + 5√3 j
現在求A與U垂直的分量。先求與U垂直的單位向量
假定與U垂直的向量為v=ai+bj
u.v=0=>√3/2 a+1/2b=0
a=(-1/√3)b
正規化後得與U垂直的單位向量
w=(-√2/2)i+(√3/2)j
a.w=(-5√2/2)+(15/2)=(15-5√2)/2
所以the component of A along a line perpendicular to U.
[(15-5√2)/2][(-√2/2)i+(√3/2)j]
=[(10-15√2)/4]i+[(15√3-5√6)/4]j


2009-02-24 02:03:16 補充:
那麼
1答案是甚麼?
2有沒有打錯題目?
2009-02-24 5:17 am
......多謝你咁詳細既解答...但係答案唔岩呀...>


收錄日期: 2021-04-13 16:27:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090223000051KK01496

檢視 Wayback Machine 備份