✔ 最佳答案
提供兩種方法
一 : 做出以A、B、C、D為根的四次方程式
令 f(x) = x^4+2x^3+x+1、g(x) = x^4*f(1/x) = x^4+x^3+2x+1
a+b+c+d = -2 , a^2+b^2+c^2+d^2 = 4 , x^3 = -2x^2 - 1 - 1/x
-> a^3+b^3+c^3+d^3= -8 - 4 + 1 = -11
-> A+B+C+D = -7
A^2 = a^4(a+1)^2 = a^6+2a^5+a^4 = -3a^3-a^2-a-1
->A^2+B^2+C^2+D^2 = 33-4+2-4 = 27
->AB+BC+AC+AD+CD+BD=(49-27)/2 = 11
(a+1)(b+1)(c+1)(d+1) = f(-1) = -1、abcd=1
-> ABCD = -1
1/A = 1/(a^2(a+1)) = 1/a^2 - 1/a + 1/(a+1)
- f'(-1)/ f(-1) = 1/(a+1) + 1/(b+1) + 1/(c+1) + 1/(d+1) = 3
-> 1/A + 1/B + 1/C + 1/D = 1+1+3 = 5
-> ABC+ACD+ABD+BCD = -5
-> (x-A)(x-B)(x-C)(x-D) = x^4+7x^3+11x^2+5x-1 = h(x)
(A+B+C)(A+B+D)(A+C+D)(B+C+D) = h(-7) = 503
二 :
令 f(x) = (x-a)(x-b)(x-c)(x-d) = x^4+2x^3+x+1
g(x) = x^3+x^2+7 = (x-α)(x-β)(x-γ)
-> f(x) = g(x)(x+1)-(x^2+6x+6)
x^2+6x+6 = (x+(3+√3))(x+(3-√3))
由一,A+B+C+D=-7
(A+B+C)(A+B+D)(A+C+D)(B+C+D)= g(a)g(b)g(c)g(d)
= f(α)f(β)f(γ) = -g(-3+√3)g(-3-√3) = (24√3 + 33)(24√3 - 33)
= 503