PHY a.c

2009-02-16 6:43 am
In an LCR series circuit ,the total impedance across the three components is the same at both frequencies
25Hz and 225Hz.What is the resonant frequency of the circuit?

回答 (1)

2009-02-16 9:58 pm
✔ 最佳答案
In an LCR series circuit, the total impedance across the circuit is given by, Z

= √[R^2 + (XL - XC)^2]

where XL is the inductive impedance, XL = ωL = 2πfL

XC is the capacitance impedance, XC = 1 / ωC = 1 / (2πfC)

So, Z can be expressed as

= √[R^2 + (2πfL - 1 / (2πfC))^2]


Now, as the impedance across the circuit are the same at f = 25 Hz and 225 Hz

Therefore, we have:

√[R^2 + (2π(25)L - 1 / (2π(25)C))^2]

= √[R^2 + (2π(225)L - 1 / (2π(225)C))^2]
_______________________________________________

2π(25)L - 1 / (2π(25)C) = 2π(225)L - 1 / (2π(225)C)

or 2π(25)L - 1 / (2π(25)C) = -[2π(225)L - 1 / (2π(225)C)]

2π(225)L - 2π(25)L = 1 / (2π(225)C) - 1 / (2π(25)C)

or 2π(225)L + 2π(25)L = 1 / (2π(225)C) + 1 / (2π(25)C)

400πL = -4/(225πC) (rejected)

or 500πL = 1/(45πC)
________________________________________________

So, LC = 1/(22 500π^2)

22 500 = 1/(π^2LC)

150 = 1/π√(LC)

75 = 1/ 2π√(LC)


Now, as resonant frequency is given by f = 1/ 2π√(LC)

Therefore, we know that the resonant frequency of the circuit is f = 75 Hz.
參考: Physics king


收錄日期: 2021-04-19 13:32:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090215000051KK02464

檢視 Wayback Machine 備份