✔ 最佳答案
In an LCR series circuit, the total impedance across the circuit is given by, Z
= √[R^2 + (XL - XC)^2]
where XL is the inductive impedance, XL = ωL = 2πfL
XC is the capacitance impedance, XC = 1 / ωC = 1 / (2πfC)
So, Z can be expressed as
= √[R^2 + (2πfL - 1 / (2πfC))^2]
Now, as the impedance across the circuit are the same at f = 25 Hz and 225 Hz
Therefore, we have:
√[R^2 + (2π(25)L - 1 / (2π(25)C))^2]
= √[R^2 + (2π(225)L - 1 / (2π(225)C))^2]
_______________________________________________
2π(25)L - 1 / (2π(25)C) = 2π(225)L - 1 / (2π(225)C)
or 2π(25)L - 1 / (2π(25)C) = -[2π(225)L - 1 / (2π(225)C)]
2π(225)L - 2π(25)L = 1 / (2π(225)C) - 1 / (2π(25)C)
or 2π(225)L + 2π(25)L = 1 / (2π(225)C) + 1 / (2π(25)C)
400πL = -4/(225πC) (rejected)
or 500πL = 1/(45πC)
________________________________________________
So, LC = 1/(22 500π^2)
22 500 = 1/(π^2LC)
150 = 1/π√(LC)
75 = 1/ 2π√(LC)
Now, as resonant frequency is given by f = 1/ 2π√(LC)
Therefore, we know that the resonant frequency of the circuit is f = 75 Hz.