angles in triangles

2009-02-15 4:51 am
Please help me answer the questions, with steps.
http://www.flickr.com/photos/81115255@N00/3277980473/

thanks

回答 (1)

2009-02-15 5:35 am
✔ 最佳答案
1.
PQ = PR (given)
PQR = PRQ (base s of isos. D)
Let PQR = PRQ = 2y

QX is the bisector of PQR. (given)
Hence, PQX = XQR = y

QXR + XQR + PRQ = 180o ( sum of D)
105o + y + 2y = 180o
3y = 75o
y = 25o

PQX + QPR = 105o (ext. of D)
y + QPR = 105o
25o + QPR = 105o
QPR = 80o


2.
ABD = AED = 30o (given)
AB = AE (sides to equal s)
BD = DE
DABD DAED (SAS)
BAC = EAC (corr. s of congr. Ds)

In DABE:
BAC + EAC + ABD + AED = 180o ( sum of D)
BAC + BAC + 30o + 30o = 180o (substitution)
2BAC = 120o
BAC = 60o

In DABC:
BAC + ABC + ACB = 180o ( sum D)
60o + (30o + 30o) + ACB = 180o (substitution)
ACB = 60o

Since BAC = ABC = ACB = 60o
DABC is an equilateral triangle.
=


收錄日期: 2021-04-23 14:47:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090214000051KK01847

檢視 Wayback Machine 備份