Maths sequence

2009-02-14 8:17 pm
Let a1 = 1, a2 = 11, an - 6an-1 + 8an-2 + 3 = 0

By difference equations, find the general term of the sequence.
更新1:

myisland8132, 可否解釋 C=-3/(1-6+8)=-1 ?

回答 (1)

2009-02-14 10:22 pm
✔ 最佳答案
an - 6an-1 + 8an-2 + 3 = 0
Consider an - 6an-1 + 8an-2 = 0
Its characteristic equation is x^2-6x+8=0
(x-4)(x-2)=0
x=4 or x=2
So the general solution is A4^t+B2^t
The particular solution of an - 6an-1 + 8an-2 + 3 = 0 is
C=-3/(1-6+8)=-1
So the general solution of an - 6an-1 + 8an-2 + 3 = 0 is
an=A4^t+B2^t-1
Substitute a1=1 and a2=11, we find that
A+B=2
16A+4B=12
A=1/3,B=5/3
i.e. an=(1/3)4^t+(5/3)2^t-1

2009-02-15 02:57:32 補充:
代an=an-1=an-2=C


收錄日期: 2021-04-26 13:05:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090214000051KK00644

檢視 Wayback Machine 備份