✔ 最佳答案
(a)
P(n): sin@ + sin3@ + sin5@ + ... + sin(2n-1)@ = sin2n@/sin@
for all positive integers n, with sin@ ≠ 0
When n = 1:
L.S. = sin@
R.S. = sin2@/sin@ = sin@
L.S = R.S.
P(1) is true.
Assume that P(k) is true, i.e.
sin@ + sin3@ + sin5@ + ... + sin(2k-1)@ = sin2k@/sin@
When n = k + 1:
To prove that: sin@ + sin3@ + sin5@ + ... + sin(2k+1)@ = sin2(k+1)@/sin@
L.S.
= sin@ + sin3@ + sin5@ + ... + sin(2k-1)@ + sin(2k+1)@
= [sin@ + sin3@ + sin5@ + ... + sin(2k-1)@] + sin(2k+1)@
= sin2k@/sin@ + sin(2k+1)@sin@/sin@
= [sin2k@ + sin(2k+1)@sin@]/sin@
= [sin2k@ + sin(2k@ + @)sin@]/sin@
= [sin2k@ + (sin2k@cos@ + cos2k@sin@)sin@]/sin@
= [sin2k@ + sin2k@cos@sin@ + cos2k@sin2@]/sin@
= [sin2k@ + 2sink@cosk@)sin@cos@ + (cos2k@-sin2k@)(1 - cos2@)]/sin@
= [sin2k@ + 2sink@cosk@)sin@cos@ + cos2k@- sin2k@ - cos2k@cos2@ + sin2k@cos2@]/sin@
= [2sink@cosk@)sin@cos@ + cos2k@ - cos2k@cos2@ + sin2k@cos2@]/sin@
= [2sink@cosk@)sin@cos@ + cos2k@(1 - cos2@) + sin2k@cos2@]/sin@
= [2sink@cosk@)sin@cos@ + cos2k@sin2@ + sin2k@cos2@]/sin@
= [(sink@cos@)2 + 2(sink@cos@)(cosk@sin@) + (cosk@sin@)]/sin@
= [sink@cos@ + cosk@sin@]2/sin@
= [sin(k@ +@)]2/sin@
= sin2(k+1)@/sin@
= R.S.
Hence, P(k+1) is true when P(k) is true.
By the principle of mathematical induction,
P(n) is true for all positive integers n, with sin@ ≠ 0
---------------
(b)
sin@ + sin3@ + sin5@ + ... + sin(2n-1)@ = sin2n@/sin@
When @ = (π/2)-x, and n = 5
sin[(π/2)-x] + sin3[(π/2)-x] + sin5[(π/2)-x] + sin7[(π/2)-x] + sin9[(π/2)-x] = sin25[(π/2)-x]/sin[(π/2)-x]
sin[(π/2)-x] + sin[(3π/2)-3x] + sin[(5π/2)-5x] + sin[(7π/2)-7x] + sin[(9π/2)-x] = sin2[(5π/2)-5x]/cosx
sin[(π/2)-x] + sin[(3π/2)-3x] + sin[(π/2)-5x] + sin[(3π/2)-7x] + sin[(π/2)-x] = sin2[(π/2)-5x]/cosx
cosx - cos3x + cos5x - cos7x + cos9x = cos25x/cosx
=