高手請入~ A math

2009-02-04 1:48 am
1) ax^3+8x^2+bx+6 can be exactly divided by x^2-2x-3

find a and b.

2) x^3+Ax-12 can be exactly divided by x+3

find A and x. (好似係,可能只要A)

Thanks. 詳細少少唔該!我完全唔明。

回答 (2)

2009-02-04 2:17 am
✔ 最佳答案
1. Let f(x) = ax^3+8x^2+bx+6
x^2-2x-3 = (x-3)(x+1)
Using the remainder theorem,
f(3) = 0
a(3^3)+8(3^2)+3b+6 = 0
27a+72+3b+6 = 0
27a+3b+78 = 0
9a+b+26 = 0 ---(1)
f(-1) = 0
a(-1)^3+8(-1)^2-b+6 = 0
-a+8-b+6 = 0
-a-b+14 = 0 ---(2)
(1)+(2): 8a+40 = 0
8a = -40
a = -5
sub a = -5 into (2):
-(-5)-b+14 = 0
-b = -19
b = 19
2. Let g(x) = x^3+Ax-12
g(-3) = 0
(-3)^3-3A-12 = 0
-27-3A-12 = 0
-3A = 39
A = -13
2009-02-04 2:34 am
Q.1就唔係幾識...
Q.2因為條式講明佢係可以被整除,,所以你計到果個REMAINDER係等於O

x^3+Ax-12/ x+3
=X^2-3-A-7....REMAINDER 係12+3A+27

因為REMAINDER係等於O
所以
12+3A+27=O
3A+39=O
A=-13
參考: 自己


收錄日期: 2021-04-13 16:25:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090203000051KK01815

檢視 Wayback Machine 備份