Factoring help please?

2009-02-02 7:38 am
I am having trouble factoring each polynomial completely over the integers. Can someone help?
1. 16x^2 + 114x - 45
2. 24ax - 16bx - 18ay + 12by
3. 54bx^3 - 16b

回答 (5)

2009-02-02 8:03 am
✔ 最佳答案
1. 16x^2 + 114x - 45

16x^2 + 114x - 45 =
(8x - 3)(2x + 15)

2. 24ax - 16bx - 18ay + 12by

24ax - 16bx - 18ay + 12by =
(24ax - 18ay) + (-16bx + 12by) =
6a(4x - 3y) - 4b(4x - 3y) =
(6a - 4b)(4x - 3y)

ANSWER: (6a - 4b)(4x - 3y)

3. 54bx^3 - 16b

54bx^3 - 16b =
2b(27x^3 - 8) =
2b[(3x)^3 - (2)^3] =
2b(3x - 2)[(3x)^2 + (3x)(2) + (2)^2] =
2b(3x - 2)(9x^2 + 6x + 4)

ANSWER: 2b(3x - 2)(9x^2 + 6x + 4)
2009-02-02 11:35 am
1)
16x^2 + 114x - 45
= 16x^2 + 120x - 6x - 45
= (16x^2 + 120x) - (6x + 45)
= 8x(2x + 15) - 3(2x + 15)
= (2x + 15)(8x - 3)

2)
24ax - 16bx - 18ay + 12by
= 24ax - 18ay - 16bx + 12by
= (24ax - 18ay) - (16bx - 12by)
= 6a(4x - 3y) - 4b(4x - 3y)
= (4x - 3y)(6a - 4b)

3)
54bx^3 - 16b
= 2(27bx^3 - 8b)
= 2b(27x^3 - 8)
= 2b[(3x)^3 - 2^3]
= 2b[3x - 2][(3x)^2 + (3x)(2) + 2^2]
= 2b[3x - 2][9x^2 + 6x + 4]
2009-02-02 8:11 am
1. 16x^2 + 114x - 45
=(8x-3)(2x+15) answer

2. 24ax - 16bx - 18ay + 12by
=8x(3a-2b)-6y(3a-2b)
=(3a-2b)(8x-6y) answer

3. 54bx^3 - 16b
=2b(27x^3-8)
=2b(3x-2)(9x^2+6x+4) answer
2009-02-02 8:04 am
1. (8x - 3)(2x + 15)

2. 8x(3a - 2b) - 6y(3a - 2b)
(8x - 6y)(3a - 2b)

3. 54bx^3 - 16b
2b(27x^3 - 8)
(2b)((3x)^3 - (2^3))
2009-02-02 7:40 am
I will mail it ot you since I cannot find the mathmatical signs need to express these equatiosn...SHould have it a coupel fo days...


收錄日期: 2021-05-01 11:55:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090201233805AAc5mGu

檢視 Wayback Machine 備份