✔ 最佳答案
1 The question is actually easy if you write out all things
Let x=(x_1, x_2,...,x_n)^T
A=
a_11,a_12,...a_1n
a_21,a_22,...a_2n
...
a_n1,a_n2,...a_nn
where x_1+x_2+...+x_n=1 ; a_11+a_21+...+a_n1=1, a_1n+a_2n+...+a_nn=1
Ax=
a_11x_1+a_12x_2+...+a_1nx_n
a_21x_1+a_22x_2+...+a_2nx_n
...
a_n1x_1+a_n2x_2+...+a_nnx_n
Add them altogether
(a_11x_1+a_12x_2+...+a_1nx_n)+(a_21x_1+a_22x_2+...+a_2nx_n)+...+(a_n1x_1+a_n2x_2+...+a_nnx_n)
=(a_11+a_21+...+a_n1)x_1+(a_12+a_22+...+a_n2)x_2+...+(a_1n+a_2n+...+a_nn)x_n
=x_1+x_2+...+x_n
=1
2
The statement is wrong. I can let A and C are abitrary matrices an B is an diagonal matrix. Then
A and B commute, B and C commute
But generally, AC=CA is wrong
2009-02-01 19:21:37 補充:
MR學問﹐我承認看錯題。不過其實這些是雞同蛋的問題﹐轉過形式便PROVE到﹐不至於COMPLETELY WRONG 嘛
2009-02-01 19:26:10 補充:
(a_11+a_21+...+a_n1)x_1+(a_12+a_22+...+a_n2)x_2+...+(a_1n+a_2n+...+a_nn)x_n
=1 (GIVEN)
x_1+x_2+...+x_n=1 (GIVEN)
2009-02-01 19:26:16 補充:
SUBSTRACT
(a_11+a_21+...+a_n1-1)x_1+(a_12+a_22+...+a_n2-1)x_2+...+(a_1n+a_2n+...+a_nn-1)x_n=0
As x_1,x_2,...x_n are positive
=>a_11+a_21+...+a_n1-1=0,...a_1n+a_2n+...+a_nn-1=0
So A , a square matrix of order n, is a stochastic matrix.