✔ 最佳答案
Qa:
(反證法)
設f(M)為最大值(absolute max), f(m)為最小值, 則
g(y)=f(M+y)+ f(M-y) - 2f(M)< 0, for all y --(A)
g(y)=f(m+y)+ f(m-y) - 2f(m) >0, for all y --(B)
(A), (B) contradition.
故不可能同時有最大值及最小值
Qb:
1. f(x+y)+ f(x-y) - 2 f(x) = g(y)
對x求導函數(y為常數)=> f'(x+y)+f'(x-y) - 2f'(x)=0 ---(C)
對y求導函數(x為常數)=> f'(x+y)- f'(x-y) = g'(y) ---(D)
(C)+(D) => 2f'(x+y)- 2f'(x)= g'(y) ---(E)
2. f(x+y)+f(x-y) - 2f(x)= g(y)
(1)令 y=x => g(x)= f(2x)+ f(0) - 2f(x)
(導函數)=> g'(x)= 2f'(2x)- 2f'(x) ---(F)
(2)由(C)令 x=y =>f'(2x)+f'(0)- 2f'(x)=0 ---(G)
(F),(G)消去f'(2x) => g'(x)= 2 f'(x)- 2f'(0) ---(H)
(3) (H)代入(E)=> 2f'(x+y)- 2f'(x)= 2 f'(y)- 2f'(0)
=> f'(x+y) - f'(x) = f'(y) - f'(0) ---(I) (Qb得證)
Qc:
由(I)同除以 y : [ f'(x+y) - f'(x)]/y = [f'(y) - f'(0)]/y
取lim(y->0) => f"(x) = f"(0) (得證)
Note: f"(x)= f"(0)=> f"(x)為constant =>f(x) is a poly. deg(f(x))<= 2
2009-01-31 02:26:52 補充:
1. ALE 1981是什麼?
2. 幸好沒寫那個字! 否則要挨括了! (哈哈哈!)
3. Qb比較難湊合
2009-01-31 02:37:39 補充:
ALE是三月的高考嗎?
大學入學考有這麼難喔?
2009-01-31 10:27:18 補充:
哇! 怎麼大家都對ALE這麼熟悉,連哪一年的題目,題目難度分析都這麼的清楚,甚至考試還可以考EQ,這倒是很新鮮. 真難過,只剩我孤漏寡聞.
2009-01-31 11:42:12 補充:
開個玩笑,您的EQ有沒被測出來? 哈哈哈!