Pure Maths sequence 的問題

2009-01-31 7:30 am
有一題題目唔識做:
Let f(x) and g(x) be two non-constant real valued functions such that
f(x+y)+f(x-y)-2f(x)=g(y) for all x,y belong to R(real number)
a.)show that the function f(x) cannot have both absolute max. and
absolute min. on R
b.)If f(x) is differentiable for all x belongs to R, show that
f'(x+y)-f'(x)=f'(y)-f'(0) for all x,y belong to R
c.)Suppose, further that f"(0) exists. Show that f"(x) exists for all x
belongs to R and f"(x)=f"(0)
hence, show that f(x) is a polynomail of degree less than or equal to 2.

回答 (6)

2009-01-31 9:46 am
✔ 最佳答案
Qa:
(反證法)
設f(M)為最大值(absolute max), f(m)為最小值, 則
g(y)=f(M+y)+ f(M-y) - 2f(M)< 0, for all y --(A)
g(y)=f(m+y)+ f(m-y) - 2f(m) >0, for all y --(B)
(A), (B) contradition.
故不可能同時有最大值及最小值
Qb:
1. f(x+y)+ f(x-y) - 2 f(x) = g(y)
對x求導函數(y為常數)=> f'(x+y)+f'(x-y) - 2f'(x)=0 ---(C)
對y求導函數(x為常數)=> f'(x+y)- f'(x-y) = g'(y) ---(D)
(C)+(D) => 2f'(x+y)- 2f'(x)= g'(y) ---(E)
2. f(x+y)+f(x-y) - 2f(x)= g(y)
(1)令 y=x => g(x)= f(2x)+ f(0) - 2f(x)
(導函數)=> g'(x)= 2f'(2x)- 2f'(x) ---(F)
(2)由(C)令 x=y =>f'(2x)+f'(0)- 2f'(x)=0 ---(G)
(F),(G)消去f'(2x) => g'(x)= 2 f'(x)- 2f'(0) ---(H)
(3) (H)代入(E)=> 2f'(x+y)- 2f'(x)= 2 f'(y)- 2f'(0)
=> f'(x+y) - f'(x) = f'(y) - f'(0) ---(I) (Qb得證)
Qc:
由(I)同除以 y : [ f'(x+y) - f'(x)]/y = [f'(y) - f'(0)]/y
取lim(y->0) => f"(x) = f"(0) (得證)
Note: f"(x)= f"(0)=> f"(x)為constant =>f(x) is a poly. deg(f(x))<= 2

2009-01-31 02:26:52 補充:
1. ALE 1981是什麼?
2. 幸好沒寫那個字! 否則要挨括了! (哈哈哈!)
3. Qb比較難湊合

2009-01-31 02:37:39 補充:
ALE是三月的高考嗎?
大學入學考有這麼難喔?

2009-01-31 10:27:18 補充:
哇! 怎麼大家都對ALE這麼熟悉,連哪一年的題目,題目難度分析都這麼的清楚,甚至考試還可以考EQ,這倒是很新鮮. 真難過,只剩我孤漏寡聞.

2009-01-31 11:42:12 補充:
開個玩笑,您的EQ有沒被測出來? 哈哈哈!
2009-01-31 5:38 pm
撇開六七十年代的不說, 要數近年最難的 AL 純數可算是 93 年莫屬了, 當中的一題 set theory (卷一 Q13) 至今仍為人津津樂道.
菩提兄可有興趣先睹為快? 我打由 63 至 08 年的試題皆齊備.

2009-01-31 10:29:07 補充:
菩提兄也不必如此說, 畢竟港台兩地各種文化亦有差異.
2009-01-31 4:25 pm
81年的高考,好像跟現在不同,是全部長題目呢,很刺激的啊!
可惜,到我考試的年代,已經沒有甚麼挑戰了,那裡還有以前的風光。

myisland8132兄很厲害,竟然知道是那一年的題目……@@

可惜昨晚早睡,沒機會一做了。
一起床看見所有數也給人做了……=3=
2009-01-31 3:12 pm
香港高級程度會考可算是世界上數一數二難度最高的考試。不只是考該學生的考試能力,還考核學生的EQ。

2009-01-31 11:13:00 補充:
AL是人生中一個很大的挑戰,但當過了這個挑戰,你又會覺得這很津津樂道的。

2009-01-31 11:15:02 補充:
我相信就算是現世代的考生在pure maths中考取A級成績,他們去做七八十年的舊題目也會有很多不懂... 畢竟有很多的題目而out C(香港學生的口頭襌)

2009-01-31 11:17:27 補充:
我看了93年set那條... 我完完全全被擊潰了... 完全不知在做什麼... 因因為set theory基本上已out C...

2009-01-31 11:44:50 補充:
還沒有呢... 不過EQ愈高,就代表在這個考試內較易成功~~~
2009-01-31 10:05 am
a) Suppose f attains its max. value at x=M and min. value at x=m respectively, then for all y
g(y) = f(M+y) + f(M-y) -2f(M) =< 0 and
g(y) = f(m+y) + f(m-y) -2f(m) >= 0
This implies that g(y)=0 for all y which contradicts to the assumption that g is non-constant.

b) From the functional equation, f diff. implies g diff. , hence,
f'(x+y) + f'(x-y) -2f'(x) =0 .... "y is fixed"
f'(x+y) - f'(x) = f'(x) - f'(x-y) ..... (*)
f'(x+y) - f'(x-y) =g'(y) .... "x is fixed"
- f'(x-y) =g'(y) - f'(x+y)
(*) becomes
f'(x+y) - f'(x) = f'(x) + g'(y) - f'(x+y)
f'(x+y) - f'(x) = g'(y)/2 .... for all x and y
f'(y) - f'(0) = g'(y)/2 .... take x = 0
Equating the last two equations, we have
f'(x+y) - f'(x) = g'(y)/2 = f'(y) - f'(0)

c) By first principle,
lim {f'(x+y) - f'(x)}/y = lim {f'(y) - f'(0)}/y = f''(0)
It turns out that f''(x) exists and f''(x)=f"(0)
The last statement is obvious.

2009-01-31 02:07:01 補充:
呀,慢了很多,白做了。
2009-01-31 10:05 am
HKALE 1981的題目都被您攻破!

2009-01-31 02:08:00 補充:
菩提 兄﹐您看到及時而出出手了

2009-01-31 02:59:49 補充:
香港高級程度會考﹐是一個非常刺激的考試。兩份卷共六小時。人生有幸能參加一次也不失為一件樂事。絕對是一個「勇敢者」的遊戲。

論難度﹐巔峰時期是90年代初!!!


收錄日期: 2021-04-26 13:04:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090130000051KK02351

檢視 Wayback Machine 備份