✔ 最佳答案
4k3 - 36k2 + 72k = 32, find k.
4k3 - 36k2 + 72k = 32
4k3 - 36k2 + 72k - 32 = 0
k3 - 9k2 + 18k - 8 = 0
Let f(k) = k3 - 9k2 + 18k - 8
f(2) = (2)3 - 9(2)2 + 18(2) - 8 = 0
(k - 2) is a factor of f(k).
f(k) = (k - 2)(k2 - 7x + 4)
(k - 2)(k2 - 7x + 4) = 0
k = 2 ooro k = {7 + √[72 - 4(1)(4)]}/2 ooro k = {7 - √[72 - 4(1)(4)]}/2
k = 2 ooro k = (7 + √33)/2 ooro k = (7 - √33)/2
---------------
If f(x)=x/(x+1), then f[x/(x+1)]=
f(x) = x/(x + 1)
f[x/(x + 1)]
= [x/(x + 1)]/{[x/(x + 1)] + 1}
= [x/(x + 1)]/{[x/(x + 1)] + [(x + 1)/(x + 1)]}
= [x(x + 1)]/[(2x + 1)/(x + 1)]
= [x(x + 1)] x [(x+1)/(2x + 1)]
= x/(2x + 1)
---------------
Compare x^2006/(x-1) and 6^2006 / (6-1) to find the remainder when 6^2006 is divided by 5.
When x = 6,
x2006/(x - 1) = 62006/(6 - 1)
x2006/(x - 1):
When x2006 is divided by (x - 1),
the remainder is (1)2006 = 1
62006/5 = x2006/(6 - 1):
When 62006 is divided by (6 - 1),
the remainder = 1
---------------
Let k be a non-zero constant. When x3 + kx2 + 2kx + 3k is divided by x + k, the remainder is k. Find k.
f(x) = x3 + kx2 + 2kx + 3k
When f(x) is divided by x + k, remainder = f(-k)
f(-k) = k
(-k)3 + k(-k)2 + 2k(-k) + 3k = k
-k3 + k3 - 2k2 + 3k = k
-2k2 + 2k = 0
-2k(k - 1) = 0
k = 0 or k = 1
=