✔ 最佳答案
(a)
Assume that f'(a)<0 then since f'(x) is strictly decreasing
This implies that f(b)<f(a) which is a contradiction
So f'(a)>0
(b)
x1=a-f(a)/f'(a)
Since f(a)<0,f'(a)>0 x1=a+(positive thing) >a
Consider
b-x1
=b- [a-f(a)/f'(a)]
=(b-a)+f(a)/f'(a)
=[(b-a)f'(a)+f(a)]/f'(a)
>[f(b)-f(a)+f(a)]/f'(a)
>0
Apple mean value theorem on (a,x1)
f(x1)
=f(a)+f'(d)(x1-a)
<f(a)+f'(a)(x1-a)
=0
Apple mean value theorem on (a,x1)
f'(e)
=[f(b)-f(x1)]/(b-x1)
>0
Also
f'(x1)
>f'(e)
>0
(c)
The result is proved by MI
when n=1, the result is true by (b)
Assume that when n=k is true
i.e a<xk<b f(xk<0) and f'(xk>0)
when n=k+1
xk+1=f(xk)-f(xk)/f'(xk)
>xk
>a
b-xk+1
=b-xk+f(xk)/f'(xk)
=[(b-xk)f'(xk)+f(xk)]/f'(xk)
>[((b)-f(xk)+f(xk)]/f'(xk)
>0
Apple mean value theorem on (xk,xk+1)
f(xk+1)
=f(xk)+f'(d)(xk+1-xk)
<f(xk)+f'(xk)(xk+1-xk)
=0
Apple mean value theorem on (xk+1,b)
f'(e)
=[f(b)-f(xk+1)]/(b-xk+1)
>0
Also
f'(xk+1)
>f'(e)
>0
By MI, a<xn<b and f(xn)<0 f'(xn)>0
(d)
Since a<x1<x2<...<xn<b
xn is monotonic increasing and is bounded from above by (b)
Hence lim xn exist, and lim(xn-xn+1)=0
Also as xk>a and f'(x) is strictly decreasing f'(xk)<f'(a)
lim(xn-xn+1)f'(xn)=0
f(xn)=(xn-xn+1)f'(xn) and so lim f(xn)=0
Since f is differentiable, f is continuous
Hence lim f(xn)=0 => f [lim xn]=0
That is lim xn is the zero of f
2009-01-23 17:57:21 補充:
maximal_ideal_space,
我估不到你會答﹐因為這些a_level標準題(根本上就是93年的問題)你好像興趣不大。我本來覺得煩惱即是菩提﹐EMK或者冷凝液答的可能性大些。等STEVIE-G™君自己揀最佳啦
不過朋友你答得這麼快﹐當年一定拿A啦。
另外條INTEGRATION做不到。
2009-01-23 17:58:56 補充:
Apple mean value theorem on (a,x1) 應是(x1,b)
2009-01-23 18:23:12 補充:
你再 + EMK + 菩提 = 天下無敵 Maths group
無可否認菩提計工程數學是好快﹐組合數學都有一手﹐不過代數或者數論﹐imo好像及不上 maximal_ideal_space 您。
應該再加上貓朋的dynamical system+ computer graphics
可惜無概率﹐統計加精算類﹐我是不行的﹐可以找及時而出或者找你張遼囉。
至於模糊數學﹐分形﹐劇變論那些10年都無人問一條就算啦
2009-01-24 02:37:15 補充:
有既﹐那幾條培X數學邀請賽幾何題目非閣下莫屬