Let use Lagrange Multiplier Method to solve this problem
Let length x, width y, height z
Then total surface area = 2(xy+yz+zx)=A
V=xyz
So we want to maximize xyz subject to 2(xy+yz+zx)-A=0
Using Lagrange Multiplier Method
Consider f(x,y,z)=xyz-λ[2(xy+yz+zx)-A]
∂f/∂x=yz-λ(2y+2z)
∂f/∂y=xz-λ(2x+2z)
∂f/∂z=xy-λ(2x+2y)
∂f/∂λ= 2(xy+yz+zx)-A
Set them all equal to zero
We have
yz/(2y+2z)=xz/(2x+2z)=xy/(2x+2y)
yz/(y+z)=xz/(x+z)=xy/(x+y)
It can be eqaily shown that x=y=z
So 2(xy+yz+zx)-A=0 =>6x^2=A
x=SQRT(A/6)
V=xyz=x^3=(A/6)^(3/2)
2009-01-16 18:34:30 補充:
正如maximal_ideal_space大大所知﹐這裡面有好高深的數理哲學呢。
正如周界相同﹐圓的面積最大。
http://hk.knowledge.yahoo.com/question/question?qid=7009011202123
您應該展示下你的實力嘛
2009-01-16 23:32:34 補充:
經貓朋提點﹐我知道答案了