✔ 最佳答案
1. 用change of variable,你見到(3+x^0.5)呢舊野,可以試下d下佢,你會發現出左1/2x^0.5,唔得ge就試下塞1/x^0.5入去dx做by part
in {dx/[(x^0.5)(3+x^0.5)]} let u=3+x^0.5, du=dx/2x^0.5
=2in (du/u)
=2ln Abs(u)+c
=2ln (3+x^0.5)+c 因為3+x^0.5一定正,所以可以唔要absolute sign
2. 呢題你個答案好似打多左個負號
ln3x=ln3+lnx
你會見到條式有1/x又有lnx
呢個時候塞1/x入去dx變d(lnx)
in [(ln3x)/x]dx
=in (ln3+lnx)d(lnx)
=in (ln3+lnx)d(ln3+lnx)
=1/2[ln(3x)]^2+c
通常做到涉及ln x的數,多數會看看有沒有dx/x可以轉換成d(lnx),不行的話再嘗試用by part(懂用的話很好用)
平常我建議你多做exercise,特別是較難的indefinitive integral,這可練習運用不同技巧解題。
平常用的skills:
change of variable
trigo transformation (product-sum, sin^2 x+cos^2 x=1, etc.)
integration by part
integration by substitution + completing square
(見a^2-x^2, sub a sin^2 b=x
x^2+a^2 sub a tan^2 b=x
x^2-a^2 sub a sec^2 b=x)
partial fraction (polynomials)
萬能變換 t=tan x/2
等等……