非常有價值的問題(解複對數方程)

2009-01-07 3:13 am
By using the knowledge of complex logarithm, solve the following equations in complex sense.
1. log (2x + 1) (complex) + log (x – 3) (complex) = log 10 (complex)
2. log (2x + 1) (complex) + log (x – 3) (complex) = 1
3. (log (2x + 1) (complex) )/(log (x – 7) (complex) ) = 2

Note: http://hk.knowledge.yahoo.com/question/question?qid=7008123000285 said that the normal method of solving logarithm equations learned in CE level is not valid to solving logarithm equations in complex sense.

回答 (4)

2009-01-21 12:50 pm
✔ 最佳答案

圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm01.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm02.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm03.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm04.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm05.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm06.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm07.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm08.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm09.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm10.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm11.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm12.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm13.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm14.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm15.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm16.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm17.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm18.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm19.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm20.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm21.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm22.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm23.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm24.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm25.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm26.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm27.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm28.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm29.jpg


圖片參考:http://i476.photobucket.com/albums/rr124/paul2357paul/yahooknowledge/complexlogarithm/complexlogarithm30.jpg


參考資料:
自己的見解
2009-01-15 12:55 am
在數學中,數 x 的(對於底數 b)對數是 by 的冪 y,使得 x = by。底數 b 的值一定不能是 0 也不能是 1 (在擴展到複數的復對數情況下不能是 1 的方根),典型的是 10、e 或 2。底數 b 的對數通常寫為


當 x 和 b 進一步限制為正實數的時候,對數是一個唯一的實數。

例如,因為


我們可以得出


用日常語言說,以3為底81的對數是 4。

對數函數
函數 logb(x) 依賴於 b 和 x 二者,但是術語對數函數在標準用法中用來稱呼形如 logb(x) 的函數,在其中底數 b 是固定的而只有一個參數 x。所以對每個底數 b 的值(必須是正數必須不是 1)只有一個對數函數。從這個角度看,底數 b 的對數函數是指數函數 bx 的反函數。詞語「對數」經常用來稱呼對數函數自身和這個函數的一個特定值。

對數函數圖像和指數函數圖像關於直線y=x對稱(互為反函數)。
2009-01-09 10:57 am
其實這條問題是http://hk.knowledge.yahoo.com/question/question?qid=7008123000285的延續。因為我見到EMK的那個回答指到明當用complex sense去solve logarithm equations的時候,數字並不能直接轉成logarithm,從而證明平時在中四中五所教的solve logarithm equations的方法用在solve complex logarithm equations的時候就會全錯。

2009-01-09 03:16:54 補充:
用錯的方法去solve equation,得出來的「解」自然完全沒有意義,因為「對」的「解」只是撞彩,「錯」的「解」才是道理。於是我就想問如何solve那條equation(當所有logarithm視為complex logarithm的時候)才是正確。不過這樣就會離題,所以我轉至這裡繼續發問。

2009-01-09 03:31:55 補充:
http://hk.knowledge.yahoo.com/question/question?qid=7008123000285中,EMK一直都把complex logarithm視為multi-valued function。

所以在這題的重點,都應該把complex logarithm視為multi-valued function。

2009-01-09 03:43:51 補充:
不過,亦都要多謝冷凝液提醒我complex logarithm也有principal value的概念。

而無論把complex logarithm視為multi-valued function,抑或把complex logarithm視為principal value,我都有興趣想知道。

所以回答這條問題,最好有齊「multi-valued function」和「principal value」這兩種版本。

2009-01-09 03:58:09 補充:
不過還有一點需要注意,無論把complex logarithm視為multi-valued function,抑或把complex logarithm視為principal value,都需要一氣 呵成。千萬不要在同一條equation中把部分logarithm視為multi-valued function而其餘的logarithm視為principal value。

2009-01-09 04:10:22 補充:
在這裡的log仍然是指common Logarithm。

2009-01-09 04:37:01 補充:
In ''multi-valued function'' version, "log w = log z" means "multi-valued function of log w = multi-valued function of log z".

In principal value'' version, "log w = log z" means "principal value of log w = principal value of log z".
2009-01-07 8:52 am
Dear doraemonpaul,

Some clarifications are required.

(1) Is this "complex logarithm" a multi-valued function? (You are not referring to the principal value, right?)

(2) If so, what do we mean by "log w = log z"? (For instance, is log e = log (e^(1+2iπ))?)

Thanks.


收錄日期: 2021-04-19 13:19:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090106000051KK01306

檢視 Wayback Machine 備份