a) Solve log (base 2) (2x+3)+ log (base 2) (x-2)=2
log2 [(2x+3)(x-2)] = 2
(2x+3)(x-2) = 4
2x2 + 3x - 4x - 6 - 4 = 0
2x2 - x - 10 = 0
(2x-5)(x+2) = 0
x = 5/2 or
x = -2 (not applicable)
圖片參考:
http://tw.yimg.com/i/tw/ugc/rte/smiley_18.gif
b) Simplify log (a^2*b)/[log a + log √b), where a,b >1
log (a^2*b)
= log[a*√b]^2
= 2 log [a*√b]
= 2 [log a + log √b]
So, log (a^2*b)/[log a + log √b) = 2
圖片參考:
http://tw.yimg.com/i/tw/ugc/rte/smiley_11.gif
c) {(4√2^x) * [4^(y/4)]} / [8^(z/2)]
= ???
2009-01-02 21:55:43 補充:
Sorry that the base 2 is a bit confusing.....