(i) Expand and simplify (x-5)(x+2)(x+5)?

2009-01-01 1:17 pm

回答 (11)

2009-01-01 3:33 pm
✔ 最佳答案
(x-5)(x+2)(x+5)
=(x^2-3x-10)(x+5)
=x^3-3x^2-10x+5x^2-15x-50
=x^3+2x^2-25x-50 answer @(^_^)@
2009-01-01 1:56 pm
= (x - 5)(x + 2)(x + 5)
= (x - 5)(x² + 5x + 2x + 10)
= (x - 5)(x² + 7x + 10)
= x³ + 7x² + 10x - 5x² - 35x - 50
= x³ + 2x² - 25x - 50

Answer: x³ + 2x² - 25x - 50
2016-05-23 3:08 pm
First expand the brackets seperately -8(x^2-5x+7) = -8*x^2 -8*-5x -8*7 = -8x^2 + 40x -56 5(2x-5)(3x-7) = 5(2x*3x+2x*-7-5*3x-5*-7) = 5(6x^2-14x-5x+35) = 5(6x^2-29x+35) = 30x^2-145x+175 Add the two solutions together -8x^2+40x-56+30x^2-145x+175 = 22x^2 - 105x - 119
2009-01-01 2:37 pm
(x - 5) (x² + 7x + 10)

x³ + 7x² + 10x - 5x² - 35x - 50

x³ + 2x² - 25x - 50
2009-01-01 2:17 pm
(x - 5)(x + 2)(x + 5)
= (x - 5)(x + 5)(x + 2)
= (x*x - 5*x + x*5 - 5*5)(x + 2)
= (x^2 - 5x + 5x - 25)(x + 2)
= (x^2 - 25)(x + 2)
= x^2*x - 25*x + x^2*2 - 25*2
= x^3 - 25x + 2x^2 - 50
= x^3 + 2x^2 - 25x - 50
2009-01-01 1:34 pm
(x^2 - 25)(x + 2)
= x^3 + 2x^2 - 25x - 50
參考: hope that helps
2009-01-01 1:25 pm
(x-5)(x+2)(x+5)
=(x-5)(x+5)(x+2
=(x^2-25)(x+2)
=x^3+2x^2-25x-50
2009-01-01 1:25 pm
(x-5)(x+2)(x+5)

Just forget about the (x-5) part and expand the
(x+2)(x+5)=x²+7x+10

Then multiply that answer by (x-5)
(x²+7x+10)(x-5)
=x³+7x²+10x-5x²-35x-50
=x³+2x²-25x-50

Hope this helps
2009-01-01 1:24 pm
after expanding we get
x^3 + 2x^2 - 25x - 50

no simplification
2009-01-01 1:20 pm
= (x^2 - 25)(x + 2)
= x^3 + 2x^2 - 25x - 50


收錄日期: 2021-05-01 11:44:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20090101051711AAQakVR

檢視 Wayback Machine 備份